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RÉSUMÉ

L’augmentation de l’IoT, dans des domaines tels que la santé ou l’industrie, favorise la hausse
de la surface d’attaque, ce qui soulève d’importantes préoccupations en termes de sécurité. Ces
systèmes, traitant des données sensibles, sont vulnérables aux attaques logicielles et physiques en
raison de leur connectivité réseau et de leur proximité avec les attaquants. Le suivi dynamique
des flux d’informations (DIFT) détecte les attaques logicielles, comme les maliciels, en étiquetant
et en suivant les données au moment de l’exécution. Les attaques par injection de fautes (FIA)
induisent des erreurs (par exemple, via la tension ou des lasers) perturbant le comportement
et contournant les mécanismes de sécurité. Les FIA sont critiques dans les systèmes embar-
qués et cryptographiques, où les vulnérabilités peuvent compromettre les données. Bien que de
nombreuses études aient exploré les vulnérabilités des FIA, aucune n’a ciblé les mécanismes
DIFT. Nous travaillons sur le processeur D-RI5CY, implémentant un DIFT matériel in-core.
Nous évaluons l’impact des FIA sur l’efficacité du DIFT. Grâce à des simulations d’injection
de fautes, en utilisant FISSA, un outil conçu pour l’évaluation des fautes, nous identifions les
registres vulnérables et implémentons trois protections : la parité simple pour la détection, le
code de Hamming pour la correction d’erreurs sur un bit, et SECDED pour détecter les erreurs
sur deux bits. Ces protections ont été optimisées en regroupant les registres afin de minimiser le
coût. Nous avons ensuite évalué d’autres compositions de groupes pour améliorer la protection
contre des modèles plus complexes, en développant quatre stratégies pour améliorer la détection
et la correction des erreurs.
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ABSTRACT

Embedded security is more and more crucial with the huge increase of IoT devices, enhancing
efficiency and addressing challenges like industrial change and health. However, their widespread
use also increases the attack surface, raising significant security concerns. These systems, han-
dling sensitive data, are vulnerable to both software and physical attacks due to their network
connectivity and proximity to attackers. Dynamic Information Flow Tracking (DIFT) detects
software attacks, such as buffer overflows, by tagging and tracking data at runtime. Fault In-
jection Attacks (FIA) deliberately introduce hardware errors to disrupt normal operation and
bypass security mechanisms. These faults can be introduced physically (e.g., via voltage or
lasers). FIAs are concerning in embedded and cryptographic systems, where low-level faults can
compromise sensitive data. Although many studies have explored FIA vulnerabilities, none have
targeted DIFT mechanisms. Our research focuses on the D-RI5CY processor, which implements
a hardware in-core DIFT. We assess the impact of FIAs on DIFT’s effectiveness in this pro-
cessor. Through fault injection simulations, using FISSA, a tool developed to facilitate fault
evaluation, we identify vulnerable hardware registers and implement three countermeasures:
simple parity for error detection, Hamming Code for single-bit error correction, and SECDED
to detect double-bit errors. These were optimised by grouping registers to minimise redundancy
overhead. We further evaluated multiple register group compositions to enhance countermea-
sures against complex fault models, developing four strategies to improve error detection and
correction efficiency.
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RÉSUMÉ ÉTENDU

L’Internet des objets (IoT) a transformé notre interaction avec la technologie en rendant possible
la connectivité et la communication entre une multitude de dispositifs. Ces derniers, intégrés
dans notre quotidien, allant des ampoules connectées aux véhicules autonomes, collectent et
échangent des données relatives à leur utilisation et à leur environnement. Toutefois, les systèmes
embarqués, qui constituent le cœur des dispositifs IoT, sont de plus en plus vulnérables aux
attaques logicielles, matérielles et réseaux, pouvant entraîner des fuites de données ou l’accès non
autorisé à des composants critiques. Ces systèmes sont souvent déployés dans des environnements
dans lesquels ils sont exposés à des adversaires potentiels, les rendant ainsi des cibles privilégiées
pour différentes formes d’attaques.

La sécurité des logiciels constitue un pilier fondamental dans le développement et le dé-
ploiement des systèmes embarqués, intégrant des pratiques et des mesures visant à protéger
les applications contre les attaques malveillantes et autres vulnérabilités. Concernant la sécurité
matérielle, les attaques physiques englobent une gamme de techniques visant à compromettre les
systèmes embarqués en exploitant des failles dans la couche physique ou dans la mise en œuvre
matérielle. Parmi les attaques les plus courantes, on retrouve l’ingénierie inverse, les attaques
par canaux auxiliaires et les attaques par injection de fautes.

Dans cette thèse, nous proposons tout d’abord une revue de l’état de l’art couvrant les trois
axes principaux de nos travaux. Nous introduisons dans un premier temps les mécanismes de
suivi de flux d’informations, en présentant succinctement les solutions existantes et leur rôle
dans la détection des attaques logicielles. Ensuite, nous abordons les attaques physiques, avec
un accent particulier sur les attaques par injection de fautes. Enfin, nous concluons en examinant
et en discutant les contre-mesures existantes face à ces attaques.

Deuxièmement, nous présentons le processeur étudié, intégrant un mécanisme de suivi de
flux d’informations dynamiques matériel in-core, et décrivons son architecture et son fonction-
nement en configuration par défaut. Nous détaillons ensuite les cas d’utilisation retenus pour
évaluer le DIFT face aux attaques par injection de fautes. Enfin, nous réalisons une évaluation
approfondie de la vulnérabilité de ces cas avec le mécanisme de sécurité D-RI5CY, montrant
que l’implémentation DIFT est vulnérable à ces attaques, les registres critiques variant selon le
modèle de fautes et l’application. En effet, l’utilisation de différents chemins d’exécution dans
les applications entraîne une criticité variable des registres concernés.

Troisièmement, nous avons développé un outil open source, nommé FISSA, pour automatiser
les campagnes d’injection de fautes en simulation à partir d’outils de développement HDL tels
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que Questasim. Cet outil génère des scripts TCL exécutables par un simulateur HDL et produit
des logs permettant d’analyser la vulnérabilité d’un modèle face à un modèle de fautes spécifique.
FISSA est utilisé tout au long de cette thèse pour l’évaluation de la sécurité, en s’inscrivant dans
la démarche de Sécurité dès la Conception.

Quatrièmement, nous avons démontré que le processeur D-RI5CY est vulnérable aux at-
taques par injection de fautes. En réponse, nous avons proposé trois contre-mesures basées sur
des codes détecteurs et correcteurs d’erreurs : la simple parité pour la détection, le code de
Hamming pour la détection et correction d’une faute, et SECDED (Single Error Correction,
Double Error Detection), une extension du code de Hamming avec un bit supplémentaire pour
détecter deux fautes et en corriger une. Ces contre-mesures offrent d’excellents résultats, avec
une détection et correction de 100 % des fautes injectées dans les modèles de fautes 1-bit et sur
un modèle de fautes dans lequel on injecte deux fautes sur deux cycles différents.

Cinquièmement, nous avons exploré des modèles de fautes plus réalistes et démontrés que les
contre-mesures initiales deviennent insuffisantes face aux attaques par injection multi-bits. Pour
pallier ces faiblesses, nous avons proposé quatre stratégies d’implémentation visant à réduire le
taux de succès des attaques, tout en maintenant un faible coût en termes de performances et de
surface. Parmi ces stratégies, les quatrième et cinquième se sont révélées les plus efficaces, bien
qu’elles engendrent les coûts les plus élevés en termes de ressources.

En conclusion de ce travail de recherche, nous avons évalué la robustesse du mécanisme DIFT
contre les attaques par injection de fautes. Nous avons montré que ces mécanismes nécessitent
des protections supplémentaires pour renforcer la sécurité des systèmes. Nous avons proposé
trois contre-mesures et cinq stratégies d’implémentation adaptées à différents modèles de fautes
complexes, par exemple des modèles de fautes multi-bits. Cependant, des vulnérabilités subsis-
tent toujours face aux attaques les plus complexes. L’adoption de codes correcteurs d’erreurs
plus puissants, tels que les codes LDPC ou BCH, bien qu’efficaces, impliquerait une augmen-
tation considérable de la surface et une baisse des performances, rendant leur mise en œuvre
coûteuse, voire impossible sur des systèmes à très hautes contraintes.
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INTRODUCTION

IoT without security means Internet of Threats

Stéphane Nappo
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1.3 Manuscript outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Context

An embedded system is a specialised computing system designed to perform dedicated functions
or tasks within a larger mechanical or electrical system. Unlike general-purpose computers, em-
bedded systems are optimised for specific control operations and are typically integrated into
the hardware they manage. These systems are characterised by their compact size, low power
consumption, and real-time performance constraints. They consist of microcontrollers or mi-
croprocessors, along with memory and input/output interfaces, tailored to meet the precise
requirements of the application they serve. Embedded systems are ubiquitous in modern tech-
nology, powering a wide range of devices from household appliances and medical equipments to
industrial machines and automotive systems, ensuring efficiency, reliability, and functionality in
their operations.

The Internet of Things (IoT) has revolutionised the way we interact with technology, enabling
seamless connectivity and communication between a myriad of devices. These devices are part
of our daily lives, from the connected light bulb to autonomous cars. They collect and share
data about how they are used and the environment in which they operate. Immense amounts of
data are also being generated by connected cars, production, and transport applications. Today,
Industrial IoT (IIoT) represents the largest and fastest-growing volume of data. To capture data,
they rely on sensors embedded in every physical device, such as mobile phones, smartwatches,
medical devices (pacemakers, cardiac defibrillators, etc.), but also in recent cars, or in agriculture
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Figure 1.1: Number of IoT devices worldwide from 2022 to 2033 (from [1])

to monitor humidity, temperature, or automate the irrigation system. These sensors generate
data that can be critical, and as these data exist, they are subjects to cyber-attacks. According
to forecasts, the number of IoT devices in use worldwide is estimated to reach approximatively
40 billion in 2033 [1], as shown in Figure 1.1, while, today, in 2024, we count around 18 billion.
The economic impact of IoT is substantial, with worldwide consumer IoT revenue expected
to rise from $181.5 billion in 2020 to $621.6 billion by 2030 [2] as shown in Figure 1.2. As
IoT continues to expand its reach, the importance of ensuring robust security in these systems
becomes increasingly critical. IoT devices, often characterised by limited resources and large-
scale deployment, present unique security and privacy challenges.

Embedded systems, which form the backbone of IoT devices, are increasingly vulnerable to
both software and hardware threats, as well as network-based threats, which can lead to data
leaks or unauthorised access to essential system components. These systems are frequently de-
ployed in environments where they are exposed to potential adversaries, making them attractive
targets for various types of attack [3, 4].

Software security is a critical aspect of the development and deployment of software systems,
encompassing measures and practices designed to protect applications from malicious attacks,
vulnerabilities, and other security risks. It involves the implementation of protocols to ensure
the confidentiality, integrity, and availability of software and data. This field addresses a wide
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Figure 1.2: IoT total annual revenue worldwide from 2020 to 2030 (from [2])

range of threats, including but not limited to, malware [5], memory overflow attacks [6], SQL
injection [7], and Cross-Site Scripting (XSS) [8]. Effective software security practices include
rigorous code reviews, the use of secure coding standards, regular vulnerability assessments, and
the deployment of encryption and authentication mechanisms. As software becomes increasingly
integral to various aspects of daily life and business operations, ensuring its security is paramount
to safeguarding sensitive information, maintaining user trust, and preventing financial and rep-
utational damage.

Network attacks, such as Distributed Denial of Service (DDoS) attacks, can overwhelm
an embedded system’s network interface, rendering it inoperative, while man-in-the-middle
attacks [9] intercept and potentially alter communication between devices. Internet Protocol
spoofing [10], jamming [11], and many others also represent critical attacks toward network in-
frastructures. These vulnerabilities can be exploited to leak confidential data, corrupt system
functionality, or gain control over critical system operations, underscoring the urgent need for
robust security mechanisms in embedded systems.

On the hardware front, physical attacks refer to different techniques and methods aimed
at compromising the security of embedded systems. These attacks exploit vulnerabilities in the
physical layer or implementation of the device’s hardware, to delete, modify, gain or prevent
access to confidential data. The most common physical attacks are reverse engineering, Side-

3
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Channel Attacks (SCA) and Fault Injection Attacks (FIA).
Side-channel attacks [12] are passive physical attacks that primarily aim to exploit leakages

of information from a device, such as power consumption, electromagnetic emissions, or timing
information. By capturing and analysing these side-channel data, attackers can infer sensitive
information, such as cryptographic keys [13].

Fault injection attacks [14–16] are active physical attacks, noninvasive or invasive, transient
or permanent, where the attacker intentionally try to change the normal behaviour of a device
during program execution by injecting one or more faults, then observing the erroneous behaviour
that could be further exploited as a vulnerability. Boneh et al. [17] introduced fault injection
attacks. They were able to break some cryptographic protocols by inducing faults into the
computations.

In this dissertation, we only study and present fault injection attacks. Nowadays, these at-
tacks are more and more easier to make. For example, NetSPI introduced, in the Black Hat
conference in Las Vegas, in August 2024, a new laser hacking device called the RayV Lite [18].
The authors, Sam Beaumont and Larry "Patch" Trowell, presented their open-source tool that
aims to let anyone achieve laser-based tricks to reverse engineer chips and trigger their vulner-
abilities. There are already some tools such as Riscure Laser Station [19] that costs between
$10,000 and $150,000. In the same way as NewAE [20, 21] with their ChipWhisperer or Chip-
Shouter that allow to realise clock glitching, voltage glitching or even electromagnetic injection
at a lower cost and more accessible, RayV Lite allows people to perform laser-based attacks for
only $500 which is more accessible and cheaper than any other tools available. Another work, in
2020, from M. S. Kelly and K. Mayes [22] presented a setup with cheap components where they
were able to make a laser setup for around $500. The low cost and relative ease of construction
of their laser environment suggests that developers of IoT devices need to seriously consider this
threat on their devices, because it must be assumed that these attack techniques are readily
available to malicious attackers.

Many studies have shown the vulnerabilities of critical systems against fault injection attacks.
Laurent et al. [23] demonstrate that it is possible to recover computed secret data using FIA
in hidden registers on the RISC-V Rocket processor. Electromagnetic Fault Injection (EMFI)
attack can be used to recover an AES key by targeting the cache hierarchy and the MMU, as
shown in [24]. Laser Fault Injections (LFI) can allow the replay of instructions [25], that can
lead to the overwriting of an entire section of a program. Timmers et al. [26] show the use of
glitch injections on the power supply to control the Program Counter (PC). Voltage glitches
can also lead to glitch TrustZone mechanisms, as shown in [27]. Finally, the authors of [28] have
shown that one can combine side-channel attacks and fault injection attacks to bypass the PMP
mechanism in a RISC-V processor.

Thus, the main research question of this work is how can we maintain maximum protection
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against software attacks in the presence of physical attacks ?

1.2 Objectives

In this dissertation, we address a part of the threats that IoT devices face, with a particular
emphasis on security threats affecting the software and hardware layers of a device. The main
objective is to provide a robust security mechanism against both software and physical threats,
where the attacker performs a fault injection attack to bypass a software security mechanism
in order to realise a software attack. We rely on a security mechanism called Dynamic Informa-
tion Flow Tracking (DIFT) to protect the system against software attacks. This mechanism is
presented in Chapter 2.2.

The first contribution of this dissertation is to show that this mechanism is vulnerable to
fault injection attacks, using an HDL simulator tool to simulate the behaviour of a processor in
the presence of fault injections targeting the DIFT mechanism at runtime.

The second contribution is the development of a tool for automating the simulation process
on a given processor design. This open-source tool is available on GitHub and can be used during
the development process to find the vulnerabilities of an HDL design. Thanks to this tool, the
designer is able to check his design right from the conceptual phase in order to have a robust
design against fault injection attacks, enabling the notion of Security by Design.

The third contribution is the implementation of two lightweight countermeasures inside the
DIFT mechanism to protect it against fault injection attacks. For the countermeasures, we take
into account various constraints such as area, and performance overhead.

Finally, in our last contribution, we evaluate different implementations of lightweight coun-
termeasures to protect the mechanism against stronger fault models.

1.3 Manuscript outline

This work is segmented into seven chapters, the first being this introduction.
Chapter 2 presents the state of the art and defines the different technical terms. Firstly, it

presents Information Flow Tracking (IFT), and its different types. Secondly, it presents physical
attacks, focusing on the three mains types: reverse engineering, side-channel attacks and fault
injection attacks. Finally, the chapter presents an overview of the literature about countermea-
sures against fault injection attacks, and provides a small discussion on their advantages and
disadvantages.

Chapter 3 presents the background of this work with the presentation of the RISC-V In-
struction Set Architecture (ISA), and the architecture of the D-RI5CY core in detail. Then, the
different use cases are presented, highlighting their software vulnerability which can be detected
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by a DIFT mechanism. Finally, a vulnerability assessment is done to show how the considered
DIFT mechanism is vulnerable against fault injection attacks in these examples and where. This
work has been published in the Workshop Sensors S&P 2023 [29].

Chapter 4 introduces a new tool, FISSA, to automate fault injection campaigns in simulation.
This tool allows a designer to assess his design during the conception phase. The chapter presents
its software architecture and how to use it, and compares it to other tools available in the
literature. This work has been published in the conference DSD 2024 [30].

Chapter 5 details the different implementations of three lightweight countermeasures to pro-
tect the D-RI5CY core against fault injection attacks, taking into account common fault models.
Then, an evaluation of these protections in terms of area, performance, and efficiency is proposed.
A part of this chapter has been published in the conference ISVLSI 2024 [31].

Chapter 6 evaluates the countermeasures performances against more complex fault models.
Then, as for Chapter 5, an evaluation of these protections in terms of area, performance, and
efficiency is presented.

Chapter 7 is dedicated to the summary of this dissertation with a short discussion on the
obtained results, identifying limitations, and discussing the challenges encountered in this thesis.
We also explore future research perspectives at short and long terms, and suggest potential
improvements.
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2.1 Introduction

This chapter provides an overview of related work to contextualize the primary objectives of
the thesis. Firstly, in Section 2.2, information flow tracking is introduced, detailing the different
types and their respective purposes. We discuss the various levels of monitoring, from program
behaviour to the detection of hardware trojans. Then, in Section 2.3, we provide an overview of
the different existing physical attacks, focusing on fault injection attacks . Finally, in Section 2.4,
we present existing countermeasures against fault injection attacks.

2.2 Information Flow Tracking

The concept of Information Flow Tracking has been introduced by the work of Bell and La-
Padula [32] and by Denning [33] in 1976. This section introduces Information Flow Tracking
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mechanisms, explains how they work, and presents the various types of IFT with their different
functional levels.

2.2.1 How hardware DIFT works

DIFT is a technique used in computer security to monitor the flow of information through a
system. It aims to prevent security breaches such as data leaks, unauthorised data manipulation,
and execution of untrusted code. In DIFT, each data is associated with a tag that indicates its
security level. For example, a tag might indicate whether a data is ’trusted’ or ’untrusted’. When
a data is input into the system, it is initially tagged based on its source.

As data moves through the system, these tags are tracked to ensure compliance with security
policies and to ensure that sensitive information does not get exposed or manipulated improperly.
For instance, if an operation involves both trusted and untrusted data, the result might be tagged
as untrusted to ensure security.

An example of such security policy can be represented in Table 2.1. In this example, if the
data comes from the network or if it’s manipulated by a user, in the case of a scanf() function
in C language for example, the data cannot be trusted, while if the data comes from a secure
channel or is manipulated by the system itself, the data can be trusted.

Table 2.1: Security policies for different data inputs

Data Input Security Policy Tag
User Input User-provided Untrusted

Network External source Untrusted
Internal System-provided Trusted

Figure 2.1 illustrates the three main steps of how DIFT works. Firstly, three data, D1, D2,
and D3, with their associated tags in two different colours, are initialised on the left side of the
figure. In the second step, when the data are fetched by the core for computation, the associated
tags are propagated inside the core and confronted with the propagation policy depending on the
operations performed on the data. Finally, in the last step, on the right side of the figure, there
are two data outputs derived from the three initial data. Data D4 results from the combination
of data D2 and D3, while data D5 is derived only from data D1. Since data D1 has not been
modified, its tag remains the same. However, the tag associated to D4 is the combination of
tags from D2 and D3. Depending on the security policy, if D3 was trusted and D2 was not, the
output tag will be untrusted (i.e, as in the Figure 2.1). Consequently, when the tags go through
the final step of DIFT, they will be checked, and an exception may be raised, or the application
may be stopped due to the combination of trusted and untrusted values.
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Figure 2.1: Representation of the DIFT mechanism from initialisation to checking.

2.2.2 Different types of IFT

There are two distinct types of IFT approaches: static and dynamic, each with its own specific
objectives.

2.2.2.1 Static IFT

Static Information Flow Tracking (SIFT) is a security technique used to analyse and control
the flow of information within a program or system without executing it, by examining the
source code or compiled binary [34]. This method is particularly useful for identifying theo-
retical vulnerabilities, ensuring compliance with design principles, and preventing unauthorised
information leaks before deployment. SIFT is comprehensive, covering all possible execution
paths and detecting both explicit information flows (direct data assignments) and implicit flows
(leaks through control flow structures). By performing checks at compile-time, SIFT helps devel-
opers to address potential security issues early, enforcing principles like non-interference and data
confidentiality through security policies. However, static analysis may generate false positives by
flagging theoretical flows that might not occur in practice and may struggle with certain dynamic
language features or runtime-dependent behaviours. SIFT is employed in various contexts [35],
such as verifying secure information flow in operating systems, programming languages with
built-in information flow controls, and hardware design for secure systems [36].

2.2.2.2 Dynamic IFT

Dynamic Information Flow Tracking is a powerful security technique that monitors and analyses,
in real-time, the flow of information within a program during its execution [37]. DIFT operates
by tagging or labelling input data, also called tainting data, from potentially untrusted sources
and tracking how this data propagates through the system [38]. As the program executes, DIFT
maintains metadata about the tagged information, updating it as operations are performed on
the data. This allows the system to detect when tainted data is used in security-critical opera-
tions, such as modifying control flow or accessing sensitive resources. DIFT can be implemented
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at various levels, including hardware, software, or a combination of both. Hardware-based imple-
mentations often offer better performance but require specialized processor modifications, while
software-based approaches provide more flexibility but may incur higher overhead [37]. DIFT
has proven effective in detecting and preventing a wide range of security vulnerabilities, includ-
ing buffer overflows, format string attacks, and code injection attacks [38]. However, DIFT also
faces challenges, such as handling implicit information flows, managing performance overhead,
and addressing over-tainting issues. This approach might not cover all potential data paths, as
it is dependent on the specific conditions and inputs provided during the monitoring period.
Despite these challenges, DIFT remains a valuable tool for software security, particularly for
runtime attack detection in modern systems.

2.2.3 Different levels of DIFT

IFT can be implemented at various levels of abstraction in computing systems [34, 37, 39].
Each level presents unique trade-offs between precision, performance overhead, and ease of im-
plementation, allowing designers to choose the most appropriate approach for their security
requirements.

Software-based DIFT mechanisms benefit from close integration with the software context via
binary code instrumentation and source code modifications, offering better flexibility, customi-
sation, and scalability without altering hardware components. However, these software solutions
often incur high performance overheads due to the extra instructions required. They operate at
either the system level, monitoring OS-wide information flows, or the program level, focusing on
specific applications. On the other hand, hardware-assisted DIFT designs can efficiently enforce
security rules by implementing DIFT-related operations as hardware logic, reducing performance
overhead but at the expense of flexibility and scalability, making them challenging to deploy in
modern commercial systems. They can be implemented within processor cores or as off-core
designs. But they can also be at the lowest level, such as Gate-Level IFT who tracks information
flow through logic gates. A hybrid hardware and software co-design offers a promising alterna-
tive, enabling fine-grained security checks by associating software context with hardware data,
though it faces challenges such as balancing flexibility with hardware overhead and designing
appropriate tags that support rule updates post-deployment.

Figure 2.2 represents the different levels of a simplified embedded system: application layer,
system service layer, OS layer, and hardware layer. This figure is inspired by Figure 1.9 of [40].
Software-based IFTs work in the first three levels.

Positioned at the highest level of the software hierarchy, the application layer is responsible
for implementing system functionalities and business logic. Functionally, all modules within this
layer work together to execute the required system operations. Applications generally run in a
less-privileged mode on the processor and utilise the OS-provided API scheduling to commu-
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nicate with the operating system. The system service layer serves as the intermediary service
interface offered by the OS to the application layer. This interface allows applications to access
a variety of OS-provided services, essentially bridging the gap between the OS and applications.
Typically, this layer encompasses components like the file system, Graphical User Interface
(GUI), task manager. An Operating System (OS) is a software framework designed to man-
age hardware resources uniformly. It abstracts numerous hardware functions and offers them to
applications as services. Common services provided by an OS include scheduling, file synchroni-
sation, and networking. Operating systems are prevalent in both desktop and embedded systems.
In the context of embedded systems, OSs possess distinct characteristics such as stability, cus-
tomisability, modularity, and real-time processing capabilities. The hardware layer refers to the
physical components and circuitry, including the microprocessor or microcontroller, memory,
sensors, and input/output interfaces. This layer encompasses all the tangible electronic elements
that interact directly with each other to perform the device’s functions. It provides the essential
infrastructure that supports and drives the embedded system’s operations and connectivity.

Application

GUIFile system
Task

management

Operating System (Linux)

Hardware

Application level
IFT

OS level IFT

Low level or
Gate level IFT

System-based IFT

Application
layer

System
service layer

OS layer

Hardware
layer

Figure 2.2: Simplified representation of the different layers in an embedded system

Tracking information can be performed at various levels, from the application level to the
hardware level. Each level offers distinct advantages and disadvantages. For instance, application-
level tracking might provide detailed insights and user-friendly interfaces, while hardware-level
tracking offers more granular data and real-time monitoring but can be more complex and costly.
The following subsections explore these different levels, highlighting their respective benefits and
limitations.

2.2.3.1 Software-based DIFT

Application level DIFT tracks information flows between application variables. The pro-
grammer has to integrate data tagging inside his program and use a modified compiler or analyse
his program to check if no security violation happened. One application for DIFT at application
level is language-based. Several security extensions have been proposed for existing program-
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ming languages. JFlow [41] is one of the first works that has described an extension of the Java
language by adding statically-checked information flow annotations.

Multiple works introduce DIFT extensions for different languages, for example, such as
JavaScript [42, 43]. Austin et al. [43] propose a method for tracking information flow in dy-
namically typed languages, focusing on addressing issues with implicit paths through a dynamic
check. This approach avoids the necessity for approximate static analyses while still ensuring
non-interference. The method employs sparse information labelling, keeping flow labels implicit
where possible and introducing explicit labels only for values crossing security domains. Kemerlis
et al. [44] provide a framework, libdft, which is fast and reusable and applicable to software and
hardware. libdft provides an API for building DFT-enabled tools that work on unmodified bi-
naries.

OS level and System-based DIFT track and tag files (read or written) used by the appli-
cation. The main advantage of this approach is that it reduces the number of information flows,
which lead to an improvement of the runtime overhead compared to application based DIFT.

TaintDroid [45] introduces an extension to the Android mobile phone platform designed to
monitor the flow of privacy-sensitive data through third-party applications. Operating under
the assumption that downloaded third-party applications are untrusted, TaintDroid tracks in
real-time how these applications access and handle users’ personal information. The primary
objectives are to detect when sensitive data is transmitted out of the system by untrusted
applications, and to enable phone users or external security services to analyse these applications.
They store the tag adjacent to data for spatial locality. This may cause large performance and
storage overheads, as the tag fetching requires extra clock cycles for memory access. HiStar [46]
is an OS that has been designed to provide precise data specific security policies. The authors
propose to assign tags to different objects in the operating system instead of data.

2.2.3.2 Software and Hardware Co-Design-Based DIFT

This type of design combines the features of both software DIFT and hardware DIFT. Using
binary instrumentations and a modified compiler, the hardware and software co-design can
provide the best of these two categories of DIFT: flexible security configuration and fine-grained
protection with low impact on performances [37, 39].

One example of this type of DIFT is RIFLE [47], a runtime information-flow security system
designed from the user’s perspective, provides a practical means to enforce information-flow
security policies on all programs by leveraging architectural support. RIFLE works with every
programs that run on a system, and policy decisions are left to the user, not the programmer.
Townley et al. [48] presented LATCH, a generalizable architecture for optimizing DIFT. LATCH
exploits the observation that information flows under DIFT exhibit strong spatial and temporal
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locality, with typical applications manipulating sensitive data during limited phases of compu-
tation. The main objective is to detect attacks on the integrity of the system. The architecture
consists of a software-assisted hardware accelerator (S-LATCH) running on a single simulated
core. The software component of S-LATCH propagates tags, while the hardware accelerator
monitors the data accessed by the program to detect tags. Porquet et al. [49] presented WHISK,
a whole system DIFT architecture implemented within a hardware simulator. WHISK stores
tags and data separately in memory locations to keep low area overhead and improve flexibility
and to better accommodate the integration of hardware accelerators. The software subsystem
uses the exokernel-based MutekH operating system and provides support for tag page allocation,
configuration of the page table cache, and interrupt management for writing to untagged pages.

2.2.3.3 Hardware-based DIFT

Dalton et al. [50] report that software DIFT solutions add significative runtime overhead, up to a
slow-down of 37 times ! Therefore, in order to improve the execution time to be more on-the-fly,
the idea is to directly implement the DIFT into the hardware, but the trade-off is flexibility.
This subsection discusses the hardware-based DIFT designs, including gate-level DIFT designs
and micro-architecture-level DIFT designs. Surveys [34, 39] present an overview on all hardware
DIFT techniques. They developed a taxonomy for them and use it to classify and differentiate
hardware DIFT tools and techniques.

Off-Core DIFT operations are performed on a dedicated coprocessor working in parallel of
the main core. The main drawback is that this approach needs a support from the OS for the
synchronisation between data computations and tags computations in order to stall one core
if it needs to wait the other. But on the other hand, its advantage is that it does not require
internal hardware modifications to the main core.

Kannan et al. [51] described one of the first work using a coprocessor to improve tag compu-
tation runtime overhead. Traditional hardware DIFT systems require significant modifications
to the processor pipeline, which increases complexity and design time. Figure 2.3 represents
how an off-core DIFT would be implemented. Kannan et al. uses this idea for implementing
their solution. This coprocessor handles all DIFT functionalities, synchronizing with the main
processor only during system calls. This design eliminates the need for changes to the main pro-
cessor’s pipeline, logic, or caches, making the solution more attractive. The coprocessor is small,
with an area footprint of about 8% of a simple RISC core, and introduces less than 1% runtime
overhead for SPECint2000 applications benchmark. The paper demonstrates that the coproces-
sor provides the same security guarantees as in-core DIFT architectures, supporting multiple
security policies and protecting various memory regions and binary types. This approach offers
a balanced solution in terms of performance, cost, complexity, and practicality compared to
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existing DIFT implementations.
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Figure 2.3: Representation of a Hardware Off-Core DIFT (inspired by Figure 1 of [51])

Wahab et al. [52, 53] developed a DIFT using the ARM CoreSight debug component to
extract a trace. However, the debug component could only extract limited information about
the application executing on the core. Therefore, some instrumentations have been required to
recover the complete program trace. The information obtained from the trace is then sent to a
dedicated DIFT coprocessor, which analyses the instruction trace and propagates tags according
to a security policy. In terms of performance and area footprint, the proposed solution in [52]
gives around 5% of communication overhead and an area overhead of 0.47% from the baseline
CPU, i.e. Cortex-A9 without a DIFT, and a power consumption increased by 16%; while in [53],
the solution gives a communication overhead of 335%, an area increased by 0.95% and a power
consumption increased by 16.2%.

Off-Loading DIFT uses a dedicated core of a multicore CPU [54–56]. Figure 2.4 represents
Off-Loading DIFT principle with a core running the application and another, in parallel, running
the DIFT analysis on the application trace. The application core is instrumented in order to
generate a trace and compress it. The trace includes executed instructions and packs main
information such as PC address, register operands. This trace is then sent to the DIFT core via
the L2 cache. Finally, the security core will decompress the trace and realise tag computation in
order to check whether an illegal information flow has been done. The notion of illegal information
flow is specified thanks to a DIFT security policy. The main advantage is that hardware does
not need to know DIFT tags or policies and does not need a coprocessor with the management
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of the synchronisation between the two processors. But the main drawback is that it requires
a multicore CPU, reducing the number of core available and increasing the power consumption
due to the application trace analysis. In an embedded system where power consumption is a
critical factor, this solution is difficult to consider.

Core 1 (App)

Capture

Core 2 (DIFT)

Analysis

L1 Cache L1 Cache

L2 Cache

Log buffer

DRAM

compress decompress

Figure 2.4: Representation of a Hardware Off-Loading DIFT (inspired by Figure 1 of [51])

In-Core DIFT relies on a deeply modified processor pipeline which needs to integrate tag
computations inside the main core in parallel of data computations. This approach is highly
invasive, but does not require any additional cores or coprocessors to operate and introduces
no overhead for intercore synchronisation. Overall, its performance impact in terms of clock
cycles over native execution is minimal. On the other hand, the integrated approach requires
significant modifications to the processor core. All pipeline stages must be modified to add tags,
a dedicated register file, a tag computation unit, and first level of caches must be added to
store tags in parallel with the regular blocks into the processor core. Processor manufacturers
do not prioritise this type of approach, and as most processors are not open to the public, it
is difficult to modify them. Figure 2.5 shows the architecture of an In-Core hardware DIFT.
When the processor fetches an instruction, its associated tag is sent in parallel. In the decode
stage, the instruction is decoded while the security decode module decodes the security policy
to determine how the tag should be propagated and checked. When the instruction is executed,
the tag is sent to a tag ALU to be checked. Then, if the tag conforms to the security policy, the
tag, and the ALU output are saved into the Tag Register File, or possibly, stored in memory.
Otherwise, if the tag does not conform, the DIFT mechanism detects the security violation and
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can raise an exception. The DIFT reaction policy is not an integral part of DIFT but depends
on the higher-level OS or software.
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Figure 2.5: Representation of a Hardware In-Core DIFT (inspired by Figure 1 of [51])

Suh et al. [38] proposed an approach in which the OS identifies a set of input channels
as spurious, and the processor tracks all information flows from these inputs. Thanks to this
tracking, the processor can detect various threats, such as attacks targeting instructions or jump
addresses. If the security policy detects something malicious in hardware, the OS will process
the exception. They use a 1-bit tag, which means only two ways of representing security levels.
They present two security policies that track different sets of dependencies. Implementing the
first policy incurs, on average, a memory overhead of 0.26% and a performance decrease of
0.02%. The second policy incurs, on average, a memory overhead of 4.48% and a performance
decrease of 0.8%, and requires binary annotation unlike the first policy.

Dalton et al.[50] presented a DIFT architecture, Raksha, to support a flexible security con-
figuration at runtime. They extended all storage locations including registers, caches and main
memory with tags, they modified the ISA instruction to propagate and check tags. In this so-
lution, they use 4-bit tags for each word. The authors provided two global sets of configuration
registers, i.e., Tag Propagation Registers (TPR) and Tag Check Registers (TCR), to configure
the security policy at runtime. There is one pair of TPR/TCR for each of the four security poli-
cies. The configuration register could be configured only in high processor privilege (trusted)
mode. Moreover, the tag propagation and check could only be disabled in trusted mode. How-
ever, the security policy is difficult to update when the architecture is deployed. The Raksha
prototype is based on the Leon SPARC V8 processor, a 32-bit open-source synthesizable core,
and implemented onto an FPGA board.

Palmiero et al. [57] implemented a DIFT framework, D-RI5CY, on a RISC-V processor
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and synthesized it on a Field Programmable Gate Array (FPGA) board with a focus on IoT
applications. The proposed design tags every word in data memory with a 4-bit tag and every
general register with a 1-bit tag. Similarly to [50], Palmiero et al. [57] also adopted global
configuration registers to customise the rule of tag propagation and checking. Each type of
instruction has its own rule and can be modified separately. This method provides a more fine-
grain tracking than Raksha. This solution is described in detail in Chapter 3.2.

Gate-Level DIFT includes gate-level netlist, and RTL designs. The goal is to protect against
hardware trojans and unauthorized behaviours. To achieve that, during the creation of the
circuit, additional logic is added for each gate used in the design.

GLIFT [58] is a well-established IFT technique. All information flows, both explicit and
implicit, are unified at the gate level. GLIFT employs a detailed initialisation and propagation
policy to precisely track each bit of information flow, by adding additional logic for each gate
used in the design. By analysing how inputs influence outputs, GLIFT accurately measures true
information flows and substantially reduces the false positives typically associated with conser-
vative IFT techniques. Hu et al. [59] established the theoretical foundation for GLIFT. They
introduced several algorithms for generating GLIFT logic in large digital circuits. Additionally,
the authors identified the primary source of precision discrepancies in GLIFT logic produced
by various methods as static logic hazards or variable correlation due to reconvergent fan-outs.
Many other works have been done on GLIFT to attempt a decrease of the logic complexity.

2.3 Physical Attacks

This section presents an overview of the state of the art on physical attacks. We introduce the
different types of physical attacks and their methods to recover secret information. Firstly, we
begin with Reverse Engineering, how to retrieve information from a product to recover useful
information. Secondly, we address side-channel attacks, how to use information leakage to recover
useful information and how to analyse them. Finally, we introduce fault injection attacks. We
define the different possibilities of injection and how to achieve them.

2.3.1 Reverse Engineering

Reverse engineering refers to the process of information retrieval from a product, ranging from
aircraft to modern Integrated Circuits (IC). Reverse engineering of IC is a complex process
that involves analysing and understanding the design, functionality, and operation of existing
hardware. This technique is used for various purposes in the electronics industry, such as to
gain a full understanding of its construction and or functionality [60]. To reverse engineering
a chip [61], an attacker needs to remove the chip protection in order to observe it thanks to
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a Scanning Electron Microscope (SEM) or another method Focused Ion Beam (FIB) (i.e, this
method is explained in Chapter 2.3.3.1). Also knowing the region of interest is beneficial as the
planar surface can be reduced significantly.

2.3.2 Side-Channel Attacks

Side-channel attacks exploit information leakages on the circuit behaviour such as power con-
sumption, electromagnetic (EM) radiation or the execution time of an application. This type
of attack does not call into question the theoretical integrity of the target algorithm, but aims
to recover information by devious means due to its implementation. During data processing,
the switching between different states requires time and minimal energy dissipation, the varia-
tions of which can be analysed by the attacker. This information allows the attacker to access
secret data such as a password, or cryptographic key. The origin of these attacks date back to
the TEMPEST program from NSA [62]. They described the vulnerabilities of a cryptographic
implementation from their electromagnetic emissions, depending on the input and data.

Figure 2.6 represents the different methods of SCA on a microprocessor. The main idea is
to have an application running on the processor and an attacker will use one method to trace
the application multiple times to recover secret information (e.g. cryptographic key, password,
private data, etc.).
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Figure 2.6: Representation of the different methods of side-channel attacks
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Multiple possibilities exist to exploit SCA. As seen on Figure 2.6, power analysis exploits time
differences in target power consumption during sensitive executions. Modern systems contain
billions of transistors (up to 208 billions transistors for an Nvidia GPU GB200 Grace Blackwell1).
These transistors act as voltage switches and as they are continually switched on/off during
execution, they cause voltage variations that can be observed and measured using equipments
and devices (oscilloscope, voltmeter, etc.). These data are analysed and from a certain number
of data, an attacker can deduce secrets [63–66].

Another possibility is to analyse the execution time of a program, also known as timing
attacks and first introduced by Kocher [13], that takes advantage of the fact that some sensitive
computational operations vary in time depending on their secret inputs [67]. A third possibil-
ity is to exploit electromagnetic [68–72] emission signatures produced when conducting logic
operations. Thus, EM emissions reflect the operations of the system. In 2001, Quisquater and
Samyde [73] extended SCA with EM analysis. Another method is to exploit the temperature [74,
75] values induced by the activity of the system. This method is linked to EM emissions and
power analysis, as they use traces from the system’s execution. Finally, last but not least, an
attacker could use acoustic analysis [76–78] to extract confidential secret from the sound emitted
by the system. This technology has been around for a long time and is used in many fields, such
as sonar when the system is a submarine, a warship, or a ship to distinguish one from another.

2.3.3 Fault Injection Attacks

As early as the 1970s, with advances in the space industry, anomalies in the operation of elec-
tronic circuits were observed and possibly linked to cosmic radiation outside the Earth’s atmo-
sphere [80–82]. These disturbances were initially found to affect the performance of electronic
systems in space environments, where high-energy particles could disrupt the normal functioning
of circuits. However, as transistors became smaller and required less energy to operate, similar
phenomena were observed in terrestrial environments and aircraft systems. These transient dis-
turbances, commonly referred to as "soft errors", are now recognised as a critical issue in both
space and ground electronics, affecting everything from memory chips to complex processors.
Figure 2.7 shows a representation of a taxonomy to classify the different method of physical
attacks. Each type of attacks will be explained in the following.

However, in addition to these induces cosmic faults, wanted faults exist and are known as
FIAs. FIAs involves deliberately introducing a fault into the system to observe its behaviour
and identify potential vulnerabilities. If the error caused by the fault does not propagate and
execution of the application completes normally, the fault is ineffective. On the other hand, if
the fault affects the execution of the application, causing it to fail or behave differently than

1. https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-to-power-a-new-era-
of-computing

19

https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-to-power-a-new-era-of-computing
https://nvidianews.nvidia.com/news/nvidia-blackwell-platform-arrives-to-power-a-new-era-of-computing


Chapter 2 – State of the Art

Fault Injection
Attacks (FIA)

Invasive
Non

invasive

Laser
beam

Focused
Ion beam

Camera
flash

Clock
glitches

Voltage
glitches

Heating
attacks

X-Rays

Electromagnetic
Fault Injec-
tions (EMFI)

Figure 2.7: Taxonomy of the different methods of fault injection attacks (inspired by [79])

expected, then the fault is effective. These faults can impact the performance, functionality, and
reliability of the circuit. These attacks can induce errors in internal electronic components, which
can be utilised to recover cryptographic keys and other secret data. These attacks have been
vastly studied since their first introduction by Boneh et al. in 1997 [17, 83]. Multiple studies or
surveys [14, 16, 79, 84–86] present the different sources of FIAs. Figure 2.8 presents a summary
of the different methods of FIAs, the figure does not represent all possible methods. Each of
these attacks requires equipment which is more or less expensive and easy to acquire, ranging
from a few hundred euros (clock glitches, voltage glitches) to several hundred thousand (Laser,
X-Ray, Focused Ion Beam).

As shown in the Figure 2.7, these attacks are categorised as transient or permanent, and
invasive or non-invasive. The effect of a transient fault lasts for a limited period of time. These
faults rarely do any lasting damage to the component affected, although they can induce an
erroneous state in the system. Their aim is to temporarily disrupt the program control flow or
corrupt the results of an instruction to gain unauthorised access to sensitive code and data. By
opposition, permanent faults or destructive faults, created by purposely inflicted defects to the
chip’s structure, have a permanent effect. Once inflicted, such destructions will affect the chip’s
behaviour permanently and persist irrespective of device restarts and resets.

Invasive attacks involve major alteration to the Device Under Test (DUT), such as decapping
the System-on-Chip (SoC) to expose its internals and remove any protective layers. These pro-
cesses risk irreparable damage or destruction of the target under evaluation, potentially leading

20



Section 2.3. Physical Attacks

to permanent data loss.
Non-invasive attacks require no tampering of the DUT. They are able to mask their presence

as they have no effect on the system other than the faults they inject.
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Figure 2.8: Representation of the different methods of fault injection attacks

2.3.3.1 Invasive attacks

Invasive attacks need to decapsulate the chip or the integrated circuit. Decapsulating a die or an
IC is a process used to expose the internal components of an IC, typically for failure analysis or
reverse engineering. The goal is to carefully remove the protective encapsulation, which shields
the silicon die and is typically made of epoxy or ceramic, without causing damage to the internal
structures. There are several methods to achieve this, each suited to different packaging materials
and levels of precision, ranging from chemical processes to advanced techniques like laser ablation
and plasma etching.

The most common method is chemical decapsulation, which involves etching away the epoxy
with concentrated acids such as nitric or sulphuric acid. This process requires safety precautions
such as protective clothing and neutralisation of the acids after removal of the encapsulation. It
is an effective but dangerous process and requires careful control to avoid damaging the die, as
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over-etching can cause irreversible harm.
Another method is laser decapsulation, which uses a precision laser to remove the encapsu-

lation material layer by layer. This technique is highly accurate and reduces the risk of damage
to the die, but it is expensive and requires specialised equipment. Mechanical decapsulation
involves physically grinding or cutting away the encapsulation, but has a high risk of damaging
the die, especially when approaching the final layers.

Plasma etching is a more advanced technique that uses ionised gases to gradually etch away
the encapsulation material. It offers high precision but is slower than other methods and is typ-
ically used in research or industrial environments. Whatever method is used, safety precautions
are essential, especially when dealing with hazardous chemicals and sensitive materials.

Figure 2.9 shows three different steps to decapsulate a circuit. To be noted, this processor is
the AMD Zen2 EPYC 7702 server processor, which is not for embedded systems.

(a) Initial die from an AMD Zen
2 EPYC 7702 server processor.

(b) AMD EPYC 7702 after
CPU delidding.

(c) Die shot
of the centre die, after removal
from processor package.

Figure 2.9: Three steps to decapsulate a die (from [87])

Camera flash/light source is a type of optical attack. The attacker needs to decapsulate
the chip, and the strong radiation emitted by the flash directed at the silicon surface can cause
the blanking of memory cells where constant values are stored for algorithms execution (e.g.,
the AES S-Boxes). These attacks are inexpensive, but, on the other hand, they are not very
accurate. Skorobogatov et al. [88] used a flashgun for $30 while being able to change any bit of
an SRAM array.

Schmidt and Hutter [89] present practical attacks on implementations of RSA that use
Chinese Remainder Theorem (CRT). These attacks have been performed into a cryptographic
device through optical and EM injections. They use a laser diode as a light source, the diode
emits a light beam of 100 mW with a wavelength of 785 nm. The light from the diode is guided
thanks to a fibre-optic of 1 mm in diameter. Guillen et al. [90] present a low-cost fault injection
setup, around a couple of hundred euros, which is capable of producing localized faults in modern
8-bit and 32-bit microcontrollers. This setup does not require handling dangerous substances or
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wearing protection equipment. The fault produced by this setup are able to successfully attack
real-world cryptographic implementations, such as the NSA’s Speck lightweight block cipher [91,
92].

Laser beam is another type of optical attacks. The injected fault is similar to the one used
with a camera flash, except that it is a lot more precise and is capable of always inducing faults.
The main downside of this method is that it requires a high expertise. Dutertre et al. [93] explain
the theory behind this technique at the lowest level.

Figure 2.10: Example of a laser fault injection station (by Riscure Laser Station 2 [19])

Figure 2.10 shows an example of a laser fault injection station made by Riscure. It contains
powerful red and NIR diode lasers (respectively 14 W, and 20 W). The red laser is designed for
frontside testing of smart card chips, and in combination with the optics it produces a spot size
of 6 * 1.40 µm on the chip surface. The near-infrared laser is designed for backside testing of
smart card chips. This powerful diode laser penetrates the chip substrate to reach the transistors.
This station automates the surface scanning process, offers precise control of laser power, and
injects pulses with a small spot size. It has a precise and fast response thanks to a trigger and
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the ability to perform multi-glitching.
Using a laser beam, a single bit [94] in a memory can be set (from logical 0 to logical 1) or

reset (from logical 1 to logical 0) by attacking either the frontside or the backside of the chip.
Today, the capabilities of laser injection mechanisms make it possible to carry out attacks with
multiple faults. Colombier et al. [95] use a four-spot laser bench to inject up to 4 non-contiguous
bits in a single cycle, or multiple non-contiguous bits over multiple cycles. This fault injection
mechanism therefore makes it possible to construct much more complex attacks, potentially
capable of bypassing many countermeasures.

Breier et al. [96] studied the fault mechanism of circuit logic elements in FPGA environment,
and performed a practical laser fault injection into a single bit CED-protected block cipher in
Xilinx Virtex-5 FPGA. Figure 2.11 shows their setup to inject fault. The chip is preprocessed
by a mechanical solution in order to reduce the substrate thickness to approximatively 100 µm.
Thinner substrate leads to easier laser penetration, at the risk of destroying logic resources or
routing channels on the chip. The laser used is a 20 W diode pulse laser with 5 times magnification
lens, which reduce the effective maximum power to 10 W. The wavelength is 1064 nm and the
spot size of the laser beam is approximatively 840 µm2.

Figure 2.11: Example of a laser fault injection setup (by [96])

Focused ion beam is the most accurate and powerful fault injection technique. Focused ion
beam enables an attacker to arbitrarily modify the structure of a circuit, reconstruct missing
buses, cut existing wires and rebuild them. FIB systems typically use liquid metal ion sources,
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where their low atomic mass and the relatively low energy of these ions make them suitable for
high-resolution imaging and precision milling of materials at the nanoscale [97].

FIB can operate at a precision of 2.50 nm, which is the size of a transistor in an actual
IC. FIB workstations require very expensive consumables and a strong technical background to
fully exploit their capabilities. The only limit to the FIB technology is the diameter of the atoms
whose ions are used as a scalpel. Currently, the most common choice is Gallium, which sets the
lower bound to roughly 0.14 nm.

These attacks are out of the scope for classical considered attackers due to the cost of
the equipment. However, these attacks can be considered for critical systems such as military
equipment. The granularity of the faults that can be introduced with FIB makes it possible to
emulate both physical defects (such as stuck-at faults) and more complex logical faults.

Figure 2.12 shows the principle of how FIB works. The gallium (Ga+) primary ion beam hits
the sample surface and sputters a small amount of material, which leaves the surface as either
secondary ions (i+ or i−) or neutral atoms (n0). The primary beam also produces secondary
electrons (e−). As the primary beam strikes on the sample surface, the signal from the sputtered
ions or secondary electrons is collected to form an image.

Torrance and James [98] report a successful reconstruction of an entire read bus of a memory
containing a cryptographic key without damaging the contents of the memory.

Figure 2.12: The principle of FIB (by [99])

2.3.3.2 Non-invasive attacks

Non-invasive attacks involve inducing errors in a system without physically tampering with
the device. These attacks exploit external influences like electromagnetic interference, voltage
glitches, or clock signal manipulation to cause faults during the device’s operation. Unlike in-
vasive methods, which require dismantling or altering the hardware, non-invasive techniques
leave no physical traces, making them harder to detect. By injecting faults at precise moments,
attackers can bypass security mechanisms, retrieve sensitive data, or alter the device’s intended
functionality.
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X-Rays is another approach to inject fault very precisely, but this method is not invasive as
X-Rays can go through the IC package without the need of decapsulating it. Another advantage is
that X-Ray have a lot smaller wavelength, down to 0.01 nm, than laser injection which are limited
to the wavelength of their light source, down to 1 µm. The injected fault is semi-permanent, and
to make it disappear, the attacker has to heat up the device. This differs from other techniques,
where the fault can disappear a few cycles after injection. This technique can be compared as a
non-invasive FIB techniques. X-ray provides many opportunities for attacking electronic circuits.
Among them, we can note the possibility to cause permanent faults in cryptographic algorithms,
deactivation of countermeasures, reprogramming of memories, etc.

Anceau et al. [100, 101] propose an approach for modifying the behaviour of a transistor
in the memory of a circuit using focused X-ray beams. They use the European Synchrotron
Radiation Facility (ESRF), in Grenoble, France. Grandamme et al. [102] show efficiency of X-
Ray faults injection on flash and EEPROM memories for powered off devices. They also describe
a fault model according to their experimental results and propose a solution to correct a part of
the fault.

Clock glitches are a type of fault injection attack that targets the timing of a system’s clock
signal to introduce errors into its operation. It is primarily used to disrupt the normal execution
of a digital circuit, such as a microcontroller or a cryptographic processor, by momentarily
altering its clock frequency.

In this attack, the adversary deliberately introduces short pulses or glitches into the clock
signal. These glitches can cause the system to either skip instructions, execute them incor-
rectly, or process data in unintended ways. By carefully timing these glitches, the attacker may
manipulate sensitive operations, such as cryptographic computations, potentially exposing vul-
nerabilities like secret keys, bypassing security checks, or triggering unintended behaviour in the
device.

delay

offset

width

trigger

clk glitched

Figure 2.13: Representation of the parameters of a clock glitch attack

Figure 2.13 represents the three parameters that are taking into account for this kind of
attacks:

• Delay: the time between the rising edge of the trigger signal and the rising edge of the
targeted device’s clock cycle.
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• Offset: determines when the glitch is applied relative to the system’s clock cycle.

• Width: the duration of the glitch.

The duration of both offset and width can not be too large or too short. Because too short
values will lead to too short range to obtain a timing violation, and too large values will not
modify the instruction behaviour but can overcome the critical path.

Figure 2.14 represents an example of a clock glitch attack, where you can see the Normal
Clock is not faulted, and its behaviour is very regular. While, the Glitched Clock suffers from a
glitch where an abnormal cycle is introduced, and it induces an additional instruction execution.
Under real conditions, the injected clock cycle would not last long enough for the instructions
to execute normally. Hence, in these conditions, an instruction skip would happen.

Load 1 Load 2

Execute 1

Load 3

Execute 2

Load 4

Execute 3

Load 5

Execute 4

Load 1 Load 2

Execute 1

Glitch

Load 3

Execute 2

Load 4

Execute 3

Load 5

Execute 4

Load 6

Execute 5

Normal Clock

Glitched Clock

Figure 2.14: Representation of a clock glitch attack (inspired by [103])

Balasch et al. [104] show clock glitches can cause an instruction skip during the execution of
a program.

Voltage glitches exploit the power supply of a digital system to introduce errors in its op-
eration. Instead of manipulating the clock signal, this technique involves deliberately varying
the voltage supplied to the system, typically by creating sharp, transient drops or spikes in the
power supply (i.e. under- or overvolting) [105], or redirecting it to ground to generate voltage
drops, known as "glitches" in order to generate faults of one or multiple bits. This can corrupt
the contents of memory units or force microprocessors to misinterpret or even skip program
instructions. Such as clock glitches, voltage glitches can be used to bypass authentication mech-
anisms, extract cryptographic keys, or cause logic errors that undermine the security of a device.
It’s a widely recognised threat in hardware security, especially in applications where physical
access to devices is possible, such as smart cards, IoT devices, and hardware security modules.

Figure 2.15 represents the three parameters that are taking into account for this kind of
attacks:
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delay
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trigger

Voltage
supply

Figure 2.15: Representation of a voltage glitch attack

• Delay: the time between the rising edge of a trigger signal and the injection.

• Amplitude: the voltage value of the injection or the drop introduced. In Figure 2.15 a drop
in the voltage is represented, but the spike could be in the positive axis and then introduce
an overvoltage in the circuit.

• Length: the time duration of the applied power variation.

Timmers and Mune [106] demonstrated voltage FIAs for Linux-based privilege escalation
on an undisclosed ARM Cortex-A9-based SoC. The authors targeted the open syscall when an
unprivileged application attempted to access physical memory. The application was instrumented
to trigger the fault during the kernel’s access control check, which caused it to be skipped.
Timmers et al. [26] show the use of glitch injections on the power supply to change the CPU PC
register to a predetermined address while executing random kernel syscalls, generating system
crashes.

Heating attacks involve deliberately raising the temperature of a digital system or its com-
ponents to induce malfunctions and errors. This type of attack exploits the fact that many
electronic devices and integrated circuits are sensitive to temperature variations and may not
operate reliably when subjected to abnormal thermal conditions.

On the other hand, these attacks have limitations in terms of both temporal and spatial
precision. In other words, heating or cooling a device takes a long time due to thermal inertia
compared to the speed of the device’s calculation and hence precise attack can not be executed.

Anagnostopoulos et al. [107] present a study of data remanence effects on SRAM memories
devices for temperature ranging between −110 ◦C and −40 ◦C. From their results, they assess
potential countermeasures against a new attack defined from data remanence.

Hutter et al. [74] heat up a microcontroller beyond operating temperature and manage to
attack an RSA software implementation.

Electromagnetic fault injections disrupt the normal operation of a system. In this attack,
an attacker generates short bursts of strong electromagnetic fields aimed at a specific part of
the device, such as a microcontroller or a processor, in order to induce faults in its execution.
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The goal of EMFI is to cause unintended behaviour in the target system by disturbing
its internal electrical circuits. These disruptions can lead to various faults, such as skipping
instructions, corrupting data, triggering incorrect logic states, or bypassing security checks.
By carefully controlling the timing, location, and intensity of the EM pulses, the attacker can
influence critical operations within the device, potentially gaining access to sensitive information
or compromising the system’s security. EMFI is particularly effective because it does not require
direct physical contact with the system. The state-of-the-art EMFI setups provide millimetre-
level precision in spatial location and nanosecond-level precision in the temporal location of the
EM pulse. It’s worth noting that EMFI can also be considered invasive. Some classify EMFI
into a third category, known as semi-invasive attacks, because the package can be removed to
allow direct access to the IC, improving EMFI efficiency and accuracy.

Figure 2.16: Example of an EMFI attack setup (by [108])

Dehbaoui et al. [109] succeeded in recovering the encryption key of an AES software imple-
mentation by injecting a short EM pulse on a 32-bit microcontroller. Schmidt et al. [89] use a
simple gas lighter to induce EM pulses onto an 8-bit microcontroller with low spatial and tem-
poral precision. Trouchkine et al. [24] present an approach to recover an AES key, using EMFI,
by targeting the cache hierarchy and the MMU.

2.3.3.3 Fault Injection techniques summary

Table 2.2 shows a summary of all presented techniques to realise a fault injection attack. De-
pending on the budget available for the attacker, and the required need for spatial and timing
accuracy, the technique can be different.

Clock glitches, voltage glitches, heating attacks and camera flash can cost from few tens
of Euros / US Dollars (USD) to less than $3,000. For EMFI attacks, Chip Shouter [21] costs
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around $3,000 and more precise setup can cost $30,000 [86]. These techniques are accurate and
require a low to moderate expertise on the equipment and techniques. The level of expertise
required depends on both the equipment and the accuracy of the attack. The more precise the
equipment, the higher the level of expertise is needed. On the other hand, for even more precise
techniques, such as laser, FIB, or even X-Ray, the cost can go up to millions of USD/Euros as
the equipment can be a lot more expensive, such as the equipment needed for X-Ray injection,
but an attacker can recover a lot of secret data thanks to these attacks.

Table 2.2: Fault Injection methods summary

Technique Precision
(time)

Space
accuracy Cost Expertise Damage

risk
Clock Glitches High Low Low Low Very low

Voltage Glitches Moderate Low Low Low Very low
Heating attacks Very low Very low Low Very low Moderate

Camera flash Moderate Low Moderate Moderate High
EMFI High High Moderate Low/Moderate Low
Laser Very high Very high High High Very high

Focused Ion Beam Very high Very high Very high Very high Very high
X-Ray Very high Very high Highest Very high Very low

2.3.3.4 Fault models

In the context of physical attacks, a fault model is a conceptual representation of how faults can
occur and the effects they can have on the operation of a system. In simple terms, it describes
the various ways in which a system can be altered when subjected to external perturbations.
We present the most popular fault models, which are used in the literature.

Multiple studies [16, 84, 86, 110, 111] present a small overview on different fault models for
fault injection attacks. Different possibilities exist depending on the equipment and the effect
targeted. Otto [112] presented a deep study and definitions of fault models.

With a low-cost equipment, an attacker can achieve instruction skip, random byte attacks,
execution faults. While with higher cost equipment, this attacker is able to create bit-flip into
the architecture, bit set/reset, or stuck-at-fault, temporal bit-flip, or spatial bit-flip.

Bit-flip [94] is the modification of a bit to the logical opposite (0⇒ 1 or 1⇒ 0). Multiple bit-
flips [95] are also in this category, as long as all the target bits are selected by the attacker. There
is also, spatial bit-flips change the value of two bits in one or two registers at the same clock
cycle. And finally, temporal bit-flips that change the value of two bits in one or two registers at
two clock cycles. Bit set/reset [113] is the modification of the bit value either to logical 1 (set)
or logical 0 (reset). Again, this bit can be precisely targeted by the attacker. Random byte [114]
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is less accurate than the previous ones as the attacker targets a byte and sets it to another
random value (for example, in binary, from 0b01010101 to 0b00111001). Instruction skip [115]
ignores the execution of the current processed instruction. Stuck-at faults [116] permanently set
the targeted data to another value.

2.4 Countermeasures against FIAs

In the previous section, we showed the need to protect against fault injection attacks. In this
section, we will only present the countermeasures to protect a system against fault injection
attacks. Countermeasures can be implemented in software, in hardware, or even in the physical
layer [14].

The objectives when implementing countermeasures are:

• to detect faults and react in accordance with a security policy (for example, tolerate them
or attempt to correct them);

• to ensure that incorrect results are not usable by the attacker.

2.4.1 Countermeasures in the physical layer

Countermeasures can be implemented in the physical layer, such as sensors that detect a pertur-
bation. He et al. [117] propose a full-digital detection logic against laser fault injection. El-Baze
et al. [118] present and validate a new sensor allowing to detect EMFI. Muttaki et al. [119]
introduce a universal Fault-to-Time Converter sensor that can effectively detect fault injection
attacks (clock glitch, voltage glitch, laser, EMFI) while requiring minimal overhead.

2.4.2 Software countermeasures

Software countermeasures target vulnerable parts of the code (loops, memory access, etc.). They
are often relatively easy to implement compared with hardware countermeasures. However, they
are more likely to be bypassed, as their implementation does not take into account the system’s
microarchitecture. In addition, the cost regarding the performance of the system is significant in
terms of memory requirements and execution time [14]. The principle of duplication, for example,
doubles both the memory space required and the execution time for the protected sections. A
classic technique is to use temporal or spatial redundancy. Barenghi et al. [120] suggest tripling
instructions by storing the results in different registers. If these registers are different, it means a
fault occurred. Theißing et al. [121] implemented and systematically analysed a comprehensive
set of 19 different software countermeasure strategies for protection effectiveness, time, and
memory efficiency. Chamelot et al. [122] present SCI-FI, a countermeasure for Control Signal,
Code, and Control-Flow Integrity against Fault Injection attacks. Laurent et al. [123] analyse
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some existing countermeasures and show how they handle precise faults extracted from the
processor. Some countermeasures propose solutions to protect the data linked to the control flow.
For example, Schilling et al. [124] propose protecting the calculation of conditional branches
while preserving the error-detection capabilities at every stage of a conditional branch. They
demonstrate this by implementing an encoded comparison using AN-codes. They also integrated
this countermeasure in the LLVM compiler to automatically protect conditional branches.

However, even if those countermeasures are good against FIAs, they are still sensitive against
some attacks and can be bypassed by analysing the processor microarchitecture. Laurent et
al. [23] present an attack where they target hidden registers into a RISC-V processor. They show
that even if a code is protected against FIAs, they can find some vulnerabilities and bypass the
software countermeasures. It is then better to directly implement hardware countermeasures at
the lower level to have the best protection available.

2.4.3 Hardware countermeasures

Hardware countermeasures [14, 125] consist of adding hardware mechanisms to the system ar-
chitecture, which makes them more effective. Adding a countermeasure introduces a loss of
performance into the target system. Its implementation usually involves increasing the size of
the hardware’s area, reducing the maximum frequency, or increasing the power consumption.
However, once the implementation is done, an evaluation of the protection is usually done to
compare it and give some indications in terms of area, performance, or efficiency. In the state
of the art, multiple solutions exist to protect a system against FIAs such as information redun-
dancy, spatial or hardware redundancy, temporal redundancy, and obfuscation.

2.4.3.1 Hardware redundancy

Hardware redundancy [126–128] countermeasure consists of duplicating the protected circuit or
part of it to compare the result obtained after computation to check if there is a difference.
Figure 2.17 represents the spatial redundancy. An input is sent to two or more modules (i.e.
computation blocks) and the output results will be compared, to check if an error occurred.
This type of countermeasure is the most direct and simplest, but at the same time, it is the one
with the highest resource cost. One of the most common techniques used to implement hardware
redundancy is Triple Modular Redundancy (TMR). TMR involves tripling the logic and using
voters to correct the error based on the majority. This means that in order to produce the correct
output, two out of three signals must function correctly. However, there are large penalties in
terms of area and power consumption with this method.
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Figure 2.17: Representation of hardware spatial redundancy

2.4.3.2 Temporal redundancy

Temporal redundancy [129–131] is based on repeating operations in reverse. In this way, it is
possible to check the result of an operation with its previous value. It significantly increases the
time required. This is because it takes twice as long to perform reverse verification operations.
Furthermore, protection can be achieved with more or less resources, depending on security and
redundancy levels. Figure 2.18 shows how the input is saved into a register, the value is then sent
to a calculation module for output and reversed in a reverse computation module to compare
the value from the saved valued in the register. If the register’s value differs from the value
computed by the reverse module, it means that an error occurred, and then an error signal is
emitted.
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Module 1
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n

n
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Error
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Figure 2.18: Representation of hardware temporal redundancy

2.4.3.3 Instruction replay

Another type of redundancy is to execute multiple times the same instruction or block of in-
structions. This redundancy, called instruction replay or instruction duplication/triplication,
can be executed on one or more instructions and can be decided in software or in hardware.
This solution has many advantages in terms of efficiency, but it induces large overhead in terms

33



Chapter 2 – State of the Art

of performance, and area. Manssour et al. [132] present a solution to avoid large performance
overhead by using dedicated instructions on a RISC-V processor. While using a very small pro-
cessor, 2 stages, they have a 30% increase of area and 10% of frequency decrease. The hardware
replay allows reducing the execution time and code size compared to a full software protection
(for execution time, from a factor of 3 to a factor or 2, and, for code size, from a factor of 2 to
a factor or 1.3).

2.4.3.4 Information redundancy

Another approach of security is the redundancy of the information. This means that additional
information is added to the data to enable error detection or correction. The most important
techniques in this area are Error Detection Codes (EDC) and Error Correcting Codes (ECC).

EDC [133–135] is a class of countermeasures that computes the parity (odd or even) of the
protected target (e.g. registers). EDC, such as parity bits, checksums, or Cyclic Redundancy
Checks (CRC), can detect these manipulations by checking the integrity of the data or compu-
tations against redundant bits or codes. The main advantage of these countermeasures is that
they inevitably detect single-bit faults with a very small overhead, unlike other previous meth-
ods. This method can only detect an error, but is unable of correcting it. This method will be
further developed in Chapter 5.3 with an implementation of a simple parity code.

ECC [136–138], or sometimes referred to as Error Detection And Correction Code (EDAC),
ensures that even if faults are injected, the system can recover the original data or iden-
tify the presence of an error by encoding the original data with additional bits (e.g. redun-
dancy bits). This makes ECC a robust defence mechanism against fault injection attacks, im-
proving both data integrity and system reliability. ECC can be divided into two main fami-
lies and a hybrid family: Linear Block Codes, Convolutional Codes and the hybrid Turbo or
Concatenated codes. Some examples of such codes are Hamming Codes, Single Error Correc-
tion Double Error Detection (SECDED), Reed-Solomon, Low-Density Parity-Check (LDPC),
Bose–Chaudhuri–Hocquenghem (BCH) code, and Cyclic Redundancy Check. CRC can be con-
sidered as EDC as well as ECC. ECC method will be developed in Chapter 5.4 with the imple-
mentation and a detailed presentation of Hamming Code.

2.4.3.5 Obfuscation

Obfuscation is a technique that includes the addition of dummy cycles, during which the pro-
cessor performs operations that are irrelevant to the current calculation. Another strategy is to
shuffle the data to make it more difficult for the attacker to determine where to inject faults.
Their effectiveness depends on their random nature. If the obfuscation is based on a constant,
the attacker will only have to identify this constant to bypass the protection. On the other hand,
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if the obfuscation is random, the attacker will have to repeat the identification process for each
new attack.

2.5 Summary

This chapter has provided an overview of the three main areas of my PhD thesis work: informa-
tion flow tracking, physical attacks and countermeasures against fault injection.

The security mechanism, DIFT, is used to protect a system against software attacks such
as buffer overflow, SQL injection and malware. In the remainder of this work, we are using a
DIFT mechanism integrated into the hardware processor (hardware in-core DIFT) on a RISC-V
processor, enabling access to the core’s HDL code.

The physical attacks are diverse, ranging from the analysis of the sounds of a system or the
analysis of its power consumption to fault injection using a laser or even X-rays. Their study is
constantly evolving, enabling vulnerabilities in today’s embedded systems to be identified with
increasingly limited resources. This increases the number of potential attackers, making it all
the more necessary to incorporate the concept of integrated security at the design stage, with
the addition of robust countermeasures.

Finally, we provide an overview of the various existing software, hardware, and physical coun-
termeasures against fault injection attacks. These countermeasures must be integrated within
certain constraints, such as effectiveness, area overhead or performance decrease.
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3.1 Introduction

This chapter provides the background of this thesis and the vulnerability assessment. The first
section offers a description of the RISC-V Instruction Set Architecture (ISA) and an overview of
the specific RISC-V DIFT design under consideration. The second section details and describes
the considered use cases of this thesis. Finally, the third section assesses the vulnerabilities of
the D-RI5CY, using these use cases.
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Figure 3.1: D-RI5CY processor architecture overview. DIFT-related modules are highlighted in
red. (inspired by [57])

3.2 D-RI5CY

In this section, we describe the RISC-V ISA and detail the DIFT design we have chosen to focus
on. We choose to work on an open-source RISC-V core, meaning that we have the ability to
access and modify the design according to our needs.

3.2.1 RISC-V Instruction Set Architecture

RISC-V is an open and free ISA, which was originally developed at University of California,
Berkeley, in 2010, and now is managed and supported by the RISC-V Foundation, having more
than 70 members including companies such as Google, AMD, or Intel. The architecture was
designed with a focus on simplicity and efficiency, embodying the Reduced Instruction Set Com-
puter (RISC) principles. Unlike proprietary ISA, RISC-V is freely available for anyone to use
without licensing fees, making it a popular choice for academic research, commercial products,
and educational purposes.

Technically, RISC-V features a modular design, allowing developers to incorporate only the
necessary components for their specific application, which can significantly reduce the proces-
sor’s complexity and power consumption. It supports several base integer sets classified by
width—mainly RV32I, RV64I, and RV128I for 32-bit, 64-bit, and 128-bit architectures respec-
tively. Each base set can be extended with additional modules for applications requiring floating-
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point computations (e.g., RV32F, RV64F), atomic operations (e.g., RV32A, RV64A), and more.
This modularity and the openness of RISC-V have spurred a wide range of innovations in pro-
cessor design and applications in areas ranging from embedded systems to high-performance
computing.

3.2.2 DIFT design

This thesis focuses on the evaluation of a DIFT against fault injection attacks and the design
of dedicated protections. We opted to not develop a DIFT system from scratch, as this would
have required considerable time for implementation and testing, which was not within the scope
of our objectives. Consequently, we decided to review the current state of the art and select an
open-source DIFT system. As a result, we have selected the D-RI5CY [57, 139] design, which
utilises the RI5CY core supported by PULPino [140] and developed by PULP platform [141].
This is a 4-stage, in-order, 32-bit RISC-V core optimised for low-power embedded systems and
IoT applications. It fully supports the base integer instruction set (RV32I), compressed instruc-
tions (RV32C), and the multiplication instruction set extension (RV32M) of the RISC-V ISA.
Additionally, it includes a set of custom extensions (RV32XPulp) that support hardware loops,
post-incrementing load and store instructions, ALU, and MAC operations. D-RI5CY has been
developed by researchers of Columbia University, USA, in partnership with Politecnico di Torino,
Italy. D-RI5CY extends the RI5CY processor to support in-core DIFT.

Figure 3.1 presents an overview of the D-RI5CY processor’s architecture. DIFT modules are
represented in red and dark red. These modules allow tags to be initialised, propagated and
checked during the execution of a sensitive application. The Tag Update Logic module is used
to initialize or update the tag in the register file according to the tagged data. Then, when a
tag is propagated in the pipeline in parallel to its associated data, the Tag Propagation Logic
module propagates it according to the propagation policy defined in the TPR. Once a tag has
been propagated and its data has been sent out of the pipeline, the Tag Check Logic modules
check that it conforms to the security policy defined in the TCR. If not, an exception is raised
and the application is stopped to avoid accessing or executing corrupted data.

The authors of the D-RI5CY defined a library of routines to initialise the tags of the data
coming from potentially malicious channels. At program startup, D-RI5CY initialises the tags
of the registers, program counter and memory blocks to zero. The default 1-bit tag is "0 ", this
means that the data is trusted, otherwise, the tag would be set to "1 " which means that the
data is untrusted. They extended the RI5CY ISA with memory and register tagging instructions.
They have added four assembly instructions to initialise tags for user-supplied inputs:

• p.set rd: sets to untrusted the security tags of the destination register rd,

• p.spsb x0, offset(rt): sets to untrusted the security tags of the memory byte at the
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Table 3.1: Instructions per category

Class Instructions

Load/Store LW, LH[U], LB[U], SW, SH, SB, LUI, AUIPC, XPulp Load/Store
Logical AND, ANDI, OR, ORI, XOR, XORI

Comparison SLTI, SLT
Shift SLL, SLLI, SRL, SRLI, SRA, SRAI

Jump JAL, JALR
Branch BEQ, BNE, BLT[U], BGE[U]

Integer Arithmetic ADD, ADDI, SUB, MUL, MULH[U], MULHSU, DIV[U], REM[U]

address of the value stored in rt + offset,

• p.spsh x0, offset(rt): sets to untrusted the security tags of the memory half-word at the
address of the value stored in rt + offset,

• p.spsw x0, offset(rt): sets to untrusted the security tags of the memory word at the
address of the value stored in rt + offset.

Moreover, they augmented the program counter with a tag of one bit and the register file
with one tag per register’s byte (marked as T in Figure 3.1). Finally, they added 4-bit tags to
the data memory (i.e. 1 tag per byte). Each data element is physically stored in memory with
its associated tag. However, a tag can only have two values as in the Register File Tag, the tag
is on one bit.

It is worth noting that the D-RI5CY designers have chosen to rely on the illegal instruction
exception already implemented in the original RI5CY processor to manage the DIFT exceptions.
This choice minimizes the area overhead of the proposed solution.

In the Control and Status Registers (CSR), they added two additional 32-bit registers : Tag
Propagation Register and Tag Check Register. These registers are used to store the security
policy for both tag propagation and tag check. These registers contain a default policy, and they
can be modified during runtime with a simple csr write instruction, such as csrw csr, rs1 .
These policies consist of rules, which have fine-grain control over tag propagation and tag check
for different classes of instructions. The rules specify how the tags of the instruction operands are
combined and checked. Table 3.1 shows the different instructions for each category represented
in both TPR and TCR.

Table 3.2 shows the TPR configurations for the security policies considered in our work. Each
instruction type has a user-configurable 2-bit tag propagation policy field, except for Load/Store
Enable, which has a 3-bit tag. The tag propagation policy determines how the instruction result
tag is generated according to the instruction operand tags. For 2-bit fields, value ‘00’ disables
the tag propagation and the output tag keeps its previous value, value ‘01’ stands for a logic
AND on the 2 operand tags, value ‘10’ stands for a logic OR on the 2 operand tags and value
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Table 3.2: Tag Propagation Register configuration

Load/Store
Enable

Load/Store
Mode

Logical
Mode

Comparison
Mode

Shift
Mode

Jump
Mode

Branch
Mode

Arith
Mode

Bit index 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Policy 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0
Policy 2 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Table 3.3: Tag Check Register configuration

Execute
Check

Load/Store
Check

Logical
Check

Comparison
Check

Shift
Check

Jump
Check

Branch
Check

Arith
Check

Bit index 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Policy 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Policy 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

‘11’ sets the output tag to zero. The Load/Store Enable field provides a finer-granularity rule to
enable/disable the input operands before applying the propagation rule specified in the Load/-
Store Mode field. This extra tag propagation policy is defined through 3 bits. These bits allow
enabling the source, source-address, and destination-address tags, respectively.

Table 3.3 shows the TCR configurations considered in our work. Each instruction type has a
user-configurable 3-bit tag control policy field, except for Execute Check, Branch Check and
Load/Store Check which have 1, 2 and 4-bit tag control policy fields respectively. The tag
control policy determines whether the integrity of the system is corrupted based on the tags
of the instruction’s operands. The default 3-bit field should be read as follows: the right bit
corresponds to input operand 1, the middle bit corresponds to input operand 2 and the left
bit corresponds to the output tag of the operation. For each bit set, the corresponding tag is
checked to determine whether an exception must be raised. The Execute Check field is used
to check the integrity of the PC. The Branch Check field is used to check both inputs during
branch instructions. The right bit is used for input operand 1 and the left bit is used for input
operand 2. Finally, the Load/Store Check field is used to enable/disable source or destination
tags checking during a load or store instruction. These bits enable or disable the checking of the
source tag, source address tag, destination tag and destination address tag.

To summarise, at first 1⃝, TPR and TCR are configured from the default security policy.
Then at program startup 2⃝, the tags are set to trusted (i.e, set to 0) or untrusted (i.e, set
to 1) depending on their source or according to the code of the program as the developer can
specify some untrusted part of his code. The tag propagation 3⃝ and verification 4⃝ happen in
the D-RI5CY pipeline in parallel with the standard behaviour, without incurring any latency
overhead.
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3.2.3 Pedagogical case study

To present the use of the D-RISCY, we will introduce a use case to demonstrate how to use
a new security policy and how the DIFT will detect the violation of different security policies.
This use case has been developed for pedagogical purposes but does not involve a real software
attack.

In order to specify an untrusted part in the code, the developer has to use an assembly line in
C which is constructed from keywords asm volatile. The template for this assembly line is: "asm
asm-qualifiers ( AssemblerTemplate : OutputOperands [ : InputOperands [ : Clobbers ] ])". So to
explain briefly, line 7 in Listing 3.1 is composed of a custom assembly instruction "p.spsw", that
takes the "x0" register as target and specifies an address mode using the placeholder "0(%0)".
Finally, ":: "r" (&a)" part specifies the input operand, with "r" indicating that a general-purpose
register should be used to hold the address of the variable "a".

Listing 3.1 shows the C code used for this use case. Lines 2 to 4 initialize variables, lines 5 and
6 configure a security policy by writing to the TPR and TCR registers thanks to an assembly
line. Line 7 tags the variable "a" as untrusted (tag is set to "1 "). In line 8, variables "a" and "b"
are compared to determine which arithmetic operation should be performed. Lines 9 to 21 detail
the assembly code generated from the line 8 C statement. It executes the operations according
to the values of "a" and "b" stored in the registers "a4" and "a5". The "(a>b)" condition and
its associated branch is computed in line 9, the "(a-b)" subtraction in line 14 and the "a+b"
addition in line 20.

In terms of security policy, depending on which policy is used in Table 3.2 and Table 3.3,
we would have different results of exception. Security policy 1 propagates the tags with an
OR logic for five modes (arithmetic, jump, shift, logical, and load/store mode) and enables the
propagation of the tag from the source of a load/store. Security policy 1 checks the tags only for
the Execute Check (i.e., PC instruction) and for the source address and destination address for
a load/store instruction. In comparison, security policy 2 enables the propagation of all tags and
checks tags only for both inputs of arithmetic instructions. To summarise from our application
case, if we use security policy 1, the DIFT will detect the load instruction before executing
the "a > b" comparison and raise an exception; whereas if we use security policy 2, the DIFT
protection raises an exception when executing the instruction add a5,a4,a5 (i.e., the "a+b" C
statement), since variable a is untrusted and b > a.

In the continuation of this work, this use case will be referred to as Compare/Compute,
implementing security policy 2 from Table 3.2 and Table 3.3. The two other use cases will be
presented in the following Section 3.3.
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Listing 3.1: Compare/Compute C Code
1 i n t main ( ) {
2 i n t a , b = 5 , c ;
3 r e g i s t e r i n t re g asm ( " x9 " ) ;
4 a = re g ;
5 asm v o l a t i l e ( " csrw 0x700 , tprValue " ) ;
6 asm v o l a t i l e ( " csrw 0x701 , t c r V a l u e " ) ;
7 asm v o l a t i l e ( " p . spsw x0 , 0(\%0) ; " : : " r " (&a ) ) ;
8 c = ( a > b ) ? ( a−b ) : ( a+b ) ;
9 // 42 c : b l e a4 , a5 , 4 4 8

10 // 4 3 0 : addi a5 , s0 , −16
11 // 4 3 4 : lw a4 , −12( a5 )
12 // 4 3 8 : addi a3 , s0 , −16
13 // 43 c : lw a5 , −4( a3 )
14 // 4 4 0 : sub a5 , a4 , a5
15 // 4 4 4 : j 45 c
16 // 4 4 8 : addi a5 , s0 , −16
17 // 44 c : lw a4 , −12( a5 )
18 // 4 5 0 : addi a3 , s0 , −16
19 // 4 5 4 : lw a5 , −4( a3 )
20 // 4 5 8 : add a5 , a4 , a5
21 // 45 c : sw a5 , −24( s0 )
22 r e t u r n EXIT_SUCCESS ;
23 }

3.3 Use cases

This section details the considered use cases in our work. The first two use cases come from the
original paper [57]. The third use case, presented in Section 3.2.3, is a home-made case which is
used to stimulate DIFT elements that are not in others use cases.

3.3.1 First use case: Buffer Overflow

The first use case involves exploiting a buffer overflow, potentially leading to a Return-Oriented
Programming1 (ROP) attack2 and the execution of a shellcode.

The attacker exploits the buffer overflow to access the return address (RA) register. Figure 3.2
represents the five steps from the source buffer initialisation to the first shellcode instruction
being fetched. In Figure 3.2a, the source buffer, in yellow, is initialised with A, and as it is
manipulated by a user, it is tagged as untrusted (red). The destination buffer is empty, and
both PC and RA register are trusted (green). In Figure 3.2b, the source buffer is copied into the
destination buffer, the data and its tag are copied. In Figure 3.2c, the overflow occurs, and the
RA register is compromised with the address of the shellcode function from the source buffer.
Now, all the memory tags are untrusted. When the function returns, the corrupted RA register is
loaded into the PC via a jalr instruction (Figure 3.2d). This hijacks the execution flow, causing
the first shellcode instruction to be fetched from address: 0x6fc (Figure 3.2e). Due to the DIFT
mechanism, the tag associated with the buffer data overwrites the RA register tag. As the buffer
data is user-manipulated, it is tagged as untrusted (tag value = 1). Consequently, when the first
shellcode instruction is fetched, the tag associated with the PC propagates through the pipeline.
At this moment, the DIFT mechanism detects the untrusted tag and as the security policy do

1. https://en.wikipedia.org/wiki/Return-oriented_programming
2. https://github.com/sld-columbia/riscv-dift/blob/master/pulpino_apps_dift/wilander_testbed/
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Figure 3.2: Representation of a ROP attack

not allow executing an untrusted PC, an exception will be raised and the application will be
stopped. This attack demonstrates the behaviour of DIFT when monitoring the PC tag. This
use case employs the first security policy from Table 3.2 and Table 3.3.

To illustrate the use of TCR and TPR registers, we assume that buffer data tags are set
to 1 (i.e., untrusted) since the user manipulates the buffer. To detect this kind of attack, it is
necessary to ensure the PC integrity by prohibiting the use of untrusted data for this register
(i.e., Execute Check field of TCR set to 1). Regarding tag propagation configuration, load, and
store input operand tags must be propagated to output. Thus, the TPR register Load/Store
Mode field should be set to the value 10 (i.e. destination tag = source tag) and the Load/Store
Enable field must be set to 001 (i.e., Source tag enabled).

Listing 3.2 displays the C code for the buffer overflow scenario. The assembly code on line
22 of this listing represents the saving of the register x8, which is the saved register 0 or frame
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pointer register in the RISC-V ISA. Next, the source buffer is filled with A’s characters and the
shellcode address is appended to the end of this source buffer. Finally, lines 30-33 illustrate the
tag initialisation on the source buffer.

Listing 3.2: Buffer overflow C code
1 #d e f i n e BUFSIZE 16
2 #d e f i n e OVERFLOWSIZE 256
3
4 i n t b a s e _ p o i n t e r _ o f f s e t ;
5 long o v e r f l o w _ b u f f e r [OVERFLOWSIZE ] ;
6
7 i n t s h e l l c o d e ( ) {
8 p r i n t f ( " S u c c e s s ! ! \ n " ) ;
9 e x i t ( 0 ) ;

10 }
11
12 void vuln_stack_return_addr ( ) {
13 long ∗ s t a c k _ p o i n t e r ;
14 long s t a c k _ b u f f e r [ BUFSIZE ] ;
15 char propolice_dummy [ 1 0 ] ;
16 i n t o v e r f l o w ;
17
18 /∗ Just a dummy p o i n t e r setup ∗/
19 s t a c k _ p o i n t e r = &s t a c k _ b u f f e r [ 1 ] ;
20
21 /∗ S t o r e i n i the a d d r e s s o f the s t a c k frame s e c t i o n d e d i c a t e d to f u n c t i o n arguments ∗/
22 r e g i s t e r i n t i asm ( " x8 " ) ;
23
24 /∗ F i r s t s e t up o v e r f l o w _ b u f f e r with ’A ’ s and a new r e t u r n a d d r e s s ∗/
25 o v e r f l o w = ( i n t ) ( ( long ) i − ( long )&s t a c k _ b u f f e r ) ;
26 memset ( o v e r f l o w _ b u f f e r , ’A ’ , over f low −4) ;
27 o v e r f l o w _ b u f f e r [ o v e r f l o w /4 −1] = ( long )&s h e l l c o d e ;
28
29 /∗ TAG INITIALISATION ∗/
30 f o r ( i n t j =0; j<o v e r f l o w / 4 ; j++) {
31 asm v o l a t i l e ( " p . spsw x0 , 0(%[ o vf ] ) ; "
32 : : [ ov f ] " r " ( o v e r f l o w _ b u f f e r+j ) ) ;
33 }
34
35 /∗ Then o v e r f l o w s t a c k _ b u f f e r with o v e r f l o w _ b u f f e r ∗/
36 memcpy( s t a c k _ b u f f e r , o v e r f l o w _ b u f f e r , o v e r f l o w ) ;
37
38 r e t u r n ;
39 }
40
41 i n t main ( ) {
42 vuln_stack_return_addr ( ) ;
43 p r i n t f ( " Attack prevented . \ n " ) ;
44 r e t u r n EXIT_SUCCESS ;
45 }

3.3.2 Second use case: Format String (WU-FTPd)

The second use case is a format string attack3 overwriting the return address of a function to
jump to a shellcode and starts its execution. This use case uses the first security policy from
Table 3.2 and Table 3.3. This attack exploits the printf() function from the C library. It uses
the %u and %n formats (see Chapter 12, Section 12.14.3 in [142] for detailed information) to write
the targeted address.

Listing 3.3 shows the C code of this use case. The echo function assigns the x8 register to
a variable ’i’ which is copied into another variable ’a’. The lines 13-14 are used to initialise the
tag associated to the variable ’a’. This variable ‘a’ is user-defined, so it is tagged as untrusted for

3. https://github.com/sld-columbia/riscv-dift/tree/master/pulpino_apps_dift/wu-ftpd
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DIFT computation. The vulnerable statement is the printf statement in line 16. The format
%u is used to print unsigned integer characters. The format %n is used to store in memory the
number of characters printed by the printf() function, the argument it takes is a pointer to a
signed int value.

The execution of the printf at line 16 leads to write in memory 224 (0xe0) at address (a-
4), 224+35 so 259 (0x103) at address (a-3), and 512 (0x200) at addresses (a-2) and (a-1). The
attacker’s objective is to overwrite the return address with ‘0x3e0 ’ which represents the address
of the first function, called secretFunction in Listing 3.3. Table 3.4 represents the different steps
to overwrite the memory with the exact address of the malicious function. We can see that
after each write and the right shift of the writing, the address appears. Finally, we have the
address ’000002000003E0 ’ in memory from ’a+2’ to ’a-4’ but as an address is on 32-bit in our
architecture, the address fetched by the pipeline is only ’000003E0 ’. In this use case, security
policy prohibits the use of untrusted variables as store addresses. Since variable ‘a’ is untrusted,
the DIFT protection raises an exception when storing a value at memory address (a-4). This
use case has been chosen to activate the load/store modes of the DIFT policy.

Listing 3.3: WU-FTPd C code
1 void s e c r e t F u n c t i o n ( ) {
2 p r i n t f ( " C o n g r a t u l a t i o n s ! \ n " ) ;
3 p r i n t f ( "You have e n t e r e d i n the s e c r e t f u n c t i o n ! \ n " ) ;
4
5 e x i t ( 0 ) ;
6 }
7
8 void echo ( ) {
9 i n t a ;

10 r e g i s t e r i n t i asm ( " x8 " ) ;
11 a = i ;
12
13 asm v o l a t i l e ( " p . spsw x0 , 0(%[ a ] ) ; "
14 : : [ a ] " r " (&a ) ) ;
15
16 p r i n t f ( " %224u%n%35u%n%253u%n%n " , 1 , ( i n t ∗) ( a−4) , 1 , ( i n t ∗) ( a−3) , 1 , ( i n t ∗) ( a−2) , ( i n t ∗) ( a−1) ) ;
17
18 r e t u r n ;
19 }
20
21 i n t main ( i n t argc , char ∗ argv [ ] ) {
22 v o l a t i l e i n t a = 1 ;
23
24 i f ( a )
25 echo ( ) ;
26 e l s e
27 s e c r e t F u n c t i o n ( ) ;
28
29 r e t u r n 0 ;
30 }

3.3.3 Summary

To summarise, these three use cases allow stimulating each element of the DIFT mechanism.
Consequently, they can be used to study the impact of FIAs into this mechanism. The next
section studies the behaviour and assesses the DIFT against FIAs.
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Table 3.4: Memory overwrite

Address a-4 a-3 a-2 a-1 a a+1 a+2

a-4 0xE0 0x00 0x00 0x00
a-3 0x03 0x01 0x00 0x00
a-2 0x00 0x02 0x00 0x00
a-1 0x00 0x02 0x00 0x00

Memory 0xE0 0x03 0x00 0x00 0x02 0x00 0x00

Table 3.5: Numbers of registers and quantity of bits represented

HDL Module Number of registers Number of bits in registers

Instruction Fetch Stage 2 2
Instruction Decode Stage 14 19

Register File Tag 32 32
Execution Stage 1 1

Control and Status Registers 2 64
Load/Store Unit 4 9

Total 55 127

3.4 Vulnerability assessment

In order to analyse the behaviour of the processor at the application runtime against fault
injection attacks, we have simulated some fault injections campaigns in which we inject fault
inside the 55 registers associated to the DIFT, which correspond to 127 bits in total. For these
campaigns, we use a tool, developed for this purpose. This tool is described in Chapter 4 and can
generate the TCL code to automate fault injections attacks campaigns at Cycle Accurate and
Bit Accurate (CABA) level. Table 3.5 shows the repartition of these registers in every pipeline
stage of the RI5CY core and the number of associated bits. This work has been published in
the Workshop on Security and Privacy of Sensing Systems [29].

We evaluate the design by conducting fault injections campaigns. By analysing the results
of these campaigns, we can determine which specific registers are vulnerable. This evaluation
is performed for each individual use case previously presented, allowing for a more detailed
analysis. It also helps us to understand how the error tag propagates through the system and is
subsequently detected before triggering an exception.

3.4.1 Fault model for vulnerability assessment

In this vulnerability assessment, we consider an attacker able to inject faults into DIFT-related
registers leading to bit set, bit reset, and single bit-flip in one register at a given clock cycle.
As discussed in Section 2.3.3.4, these fault models are the main fault models used in FIAs for
the most accurate methods, such as laser fault injection. There is also skip instruction fault
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model which is often used but as we do not target the configuration of the DIFT, we do not
attack instructions but only registers. To bypass the DIFT mechanism, the main attacker’s
goal is to prevent an exception being raised. To reach this objective, any DIFT-related register
maintaining tag value, driving the tag propagation or the tag update process or maintaining the
security policy configuration can be targeted.

3.4.2 First use case: Buffer overflow

Table 3.6 shows that 24 fault injections in five different DIFT-related registers can lead to a
successful attack despite the DIFT mechanism (i.e., DIFT protection is bypassed). For example,
it shows that a fault injection targeting the pc_if_o_tag register can defeat the DIFT protection
if a fault is injected at cycle 3431 using a bit-flip or a set to 0 fault type. Furthermore, Table 3.6
shows that five different cycles can be targeted for the attack to succeed. In most cases, bit-flip
leads to a successful injection with 12 successes over 24. Faults in tpr_q and tcr_q are successful,
since these registers maintain the propagation rules and the security policy configuration (see
Table 3.2 and Table 3.3 for more details about each bit position). Both pc_if_o_tag and rf_
reg[1] are also critical registers for this use case. Indeed, pc_if_o_tag allows the propagation of
the PC tag while rf_reg[1] stores the tag of the return address register RA. It is worth noting
that register memory_set_o_tag is not in the Figure 3.3 of tag propagation but is vulnerable
and create a success for bypassing the DIFT in our tests in simulation.

Cycle 3430

Decode jalr to shellcode

Register File Tag

ID stage

IF stage

Fetch : 0xc34: addi sp, sp, -128
Decode : 0xc30: jalr zero,ra,0
Execute : 0xc2c: addi sp, sp, 128
WB : 0xc28: lw s0,120(sp)

Cycle 3431

Fetch 1st instruction shellcode

IF stage

Fetch : 0x6fc: addi sp, sp, -16
Decode : 0xc30: jalr zero,x1,0
Execute :
WB : 0xc2c: addi sp, sp, 128

Cycle 3432

Fetch 2nd instruction shellcode
Decode 1st instruction shellcode

Tag Check Register

ID stage

Fetch : 0x700: sw ra,12(sp)
Decode : 0x6fc: addi sp, sp, -16
Execute :
WB :

rf reg[1]

pc if o tag

pc id o tag tcr q[21]

Exception handling

Figure 3.3: Tag propagation in a buffer overflow attack
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Table 3.6: Buffer overflow: success per register, fault type and simulation time

Cycle 3428 Cycle 3429 Cycle 3430 Cycle 3431 Cycle 3432

set0 set1 bit-flip set0 set1 bit-flip set0 set1 bit-flip set0 set1 bit-flip set0 set1 bit-flip

pc_if_o_tag ✓ ✓
memory_set_o_tag ✓ ✓
rf_reg[1] ✓ ✓
tcr_q ✓ ✓ ✓ ✓ ✓
tcr_q[21] ✓ ✓ ✓ ✓ ✓
tpr_q ✓ ✓ ✓ ✓
tpr_q[12] ✓ ✓
tpr_q[15] ✓ ✓

Based on these results, we can present an in-depth analysis of the simulation results leading to
successful attacks. The aim is to understand why an attack succeeds. For that purpose, we study
the propagation of the fault through both temporal and logical views. Most of the faults targeting
both TPR and TCR registers are not detailed in this section. Indeed, these faults mainly target
the DIFT configuration and not the tag propagation and tag-checking computations. Faults
targeting these registers can be performed in any cycle prior to their use.

Figure 3.3 presents the RA register tag propagation in the context of the first use case for
a non-faulty execution. It focuses on three clock cycles from the decoding of a jalr instruction
(i.e., returning from the called function) to the DIFT exception due to a security policy violation.
In cycle 3430, this tag is extracted from the register file tag (i.e., from rf_reg[1]). In cycle 3431,
it is propagated to the pc_if_o_tag register. Then, in cycle 3432, it is propagated to the pc_id_
o_tag register and the first shellcode instruction is decoded. Since RA is tagged as untrusted and
the security policy prohibits the use of tagged data in PC (Execute Check bit = 1 in Table 3.3),
an exception is raised during the tag check process, which is performed in parallel of the first
shellcode instruction decoding.

Figure 3.3 illustrates the reason behind the sensitivity of registers rf_reg[1] and pc_if_o_tag
at cycles 3430, 3431 and 3432 highlighted in Table 3.6. We can note that pc_id_o_tag register
does not appear in Table 3.6 while Figure 3.3 shows its role during tag propagation. Actually,
this register gets its value from pc_if_o_tag, so a fault injection in this register only delays the
exception.

To further study the propagation of the fault, Figure 3.4 illustrates the logical relations
between the DIFT-related registers (yellow boxes) and control signals or processor registers
(grey boxes) driving the illegal instruction exception signal (red box). This figure does not
describe the actual hardware architecture, but highlights the logic path leading to an exception
raise. An attacker performing fault injections would like to drive the exception signal to ‘0’ to
defeat the D-RI5CY DIFT solution. Figure 3.4 shows that a single fault could lead to a successful
injection, since all logic paths are built with AND gates. For instance, if register rf_reg[1] is set
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to 0, the tag will be propagated from gate 1 to gate 4. Then, gate 5 inputs are tcr_q[21] (i.e.,
‘1’) and pc_id_o_tag (i.e., ‘0’, gate 4 output). Thus, gate 5 output is driven to ‘0’, disabling the
exception. From Figure 3.4, three fault propagation paths can be identified: from gate 1 to gate
5 if the fault is injected into rf_reg[1], from gate 4 to gate 5 if a fault is injected into pc_if_o_
tag and through gate 5 if a fault is injected into either the tcr_q or pc_id_o_tag. Analysis of
Figure 3.4 strengthens the results presented in Table 3.6 where set to 0 and bit-flip fault types
lead to successful attacks. The root cause is that the propagation paths consist entirely of AND
gates.
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Figure 3.4: Logic description of the exception driving in a buffer overflow attack
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3.4.3 Second use case: Format string (WU-FTPd)

Table 3.7, in page 53, shows that 52 fault injections in 10 DIFT-related registers can lead to a
successful attack. Furthermore, it shows that 8 different cycles can be targeted for the attack
to succeed. 29 successes over 52 are obtained with the bit-flip fault type. alu_operand_a_ex_
o_tag, alu_operand_b_ex_o_tag and alu_operator_o_mode registers are critical during cycles
52477 and 52478 since they are used for tag propagation related to the C statement (a-4). alu_
operand_a_ex_o_tag and alu_operand_b_ex_o_tag sequentially store the tag associated to
‘a’ while alu_operator_o_mode stores the propagation rule according to the TPR configuration
(see Table 3.2). regfile_alu_waddr_ex_o_tag stores the destination register index in which the
tag resulting from tag propagation should be written. check_s1_o_tag maintains the TCR value
from the decode stage to the execution stage, it is compared to the value of the operand tag for
tag checking. rf_reg[15] stores the tag associated with the ‘a’ variable. store_dest_addr_ex_o_
tag maintains the tag of the destination address during a store instruction in the execute stage.
use_store_ops_ex_o drives a multiplexer to propagate the value stored in store_dest_addr_
ex_o_tag register to the tag checking module. Finally, faults in tpr_q and tcr_q are successful,
since these registers maintain the propagation rules and the security policy configuration. The
last two registers, tpr_q and tcr_q are critical when we fault the bit 12 of TPR because the
load/store mode is set to 10, but if we change it the propagation policy will change and then
the tag will not be propagated as a mode set to 11 will clear the tag. A bit-flip at bit 15 will
impact the behaviour as it stores the load/store enable source tag. Finally, bit 20 of TCR store
the load/store check destination address tag, which is used when the program wants to store at
the address (a-4).

Figure 3.5 details the tag propagation in the context of a format string attack use case for a
non-faulty execution and illustrates the reason behind the sensitivity of registers highlighted in
Table 3.7. Figure 3.5 focuses on three clock cycles dedicated to the instruction sw a4,0(a5) de-
coding and execution, which should lead to the storage of the value 224 at address (a-4). In cycles
52482 and 52483, sw a4,0(a5) is decoded and the source operands tag are retrieved from the tag
register file. Particularly, the store destination address is retrieved from rf_reg[15] and stored in
register store_dest_addr_ex_o_tag. In cycle 52484, the destination address of the store opera-
tion is computed by the processor Arithmetic Logic Unit (ALU). In parallel, alu_operator_o_
mode, alu_operand_a_ex_o_tag, alu_operand_b_ex_o_tag, store_dest_addr_ex_o_tag and
check_s1_o_tag registers drive the tag computation corresponding to the destination address.
use_store_ops_ex_o drives a multiplexer to propagate the value stored in alu_operand_a_
ex_o_tag register to the tag checking module. alu_operand_a_ex_o_tag and alu_operand_
b_ex_o_tag sequentially store the tag associated to ‘a’ while alu_operator_o_mode stores the
propagation rule according to the TPR configuration (see Table 3.2). check_s1_o_tag maintains
the TCR value from the decode stage to the execution stage, it is compared to the value of the
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Cycle 52482

Decode store of 0E0 in (a-4)

Tag Check Register

Register File Tag

ID stage

Fetch : 0x118c: nop
Decode : 0x1188: sw a4,0(a5)
Execute : 0x1184: lw a4,-20(a3)
WB : 0x1180: addi a3,s0,-16

Cycle 52483

Fetch : 0x118c: lw s0,44(sp)
Decode : 0x1188: sw a4,0(a5)
Execute :
WB : 0x1184: lw a4,-20(a3)

Cycle 52484

Execute store in (a-4)

EX stage

ID stage

Fetch : 0x1190: addi sp,sp,48
Decode : 0x118c: nop
Execute : 0x1188: sw a4,0(a5)
WB :

rf reg[15]

tcr q[20]

alu operand a ex o tag

store dest addr ex o tag

check s1 o tag
alu operator o mode

check s2 o tag

alu operand b ex o tag

exception o tag

Exception handling

Figure 3.5: Tag propagation in a format string attack

operand tag for tag checking. Then, the store should be executed in the Execute stage. However,
the tag associated with the store destination address is set to 1 due to tag propagation (since
it is computed from variable ‘a’). Since the security policy prohibits the use of data tagged as
untrusted as a store instruction destination address (Load/Store Check field of TCR = 1010), an
exception is raised. use_store_ops_ex_o, highlighted in Table 3.7 but not shown in Figure 3.5,
drives a multiplexer leading to the propagation of register store_dest_addr_ex_o_tag.
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Figure 3.6: Logic description of the exception driving in a format string attack

To further study the propagation of the fault, Figure 3.6 illustrates the logical relations
between the DIFT-related registers (yellow boxes) and control signals or processor registers
(gray boxes) driving the illegal instruction exception signal (red box) for the second use case.
Figure 3.6 shows that a single fault could lead to a successful injection, since all logic paths
are built with AND gates. For instance, if register rf_reg[15] is set to 0, this tag value will be
propagated from gate 8 to gate 11 and to mux 12. Then, since mux 12 output drives one gate
3 input, gate 3 output is driven to ‘0’, the exception is disabled. From Figure 3.6, seven fault
propagation paths can be identified: from gate 1 to gate 3 if the fault is injected into tcr_q[20],
through gate 3 if a fault is injected into check_s1_o_tag, from gate 4 or gate 5 to gate 3 if a
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Table 3.8: Compare/Compute: number of faults per register, per fault type and per cycle

Cycle 832 Cycle 833 Cycle 834 Cycle 835
set0 set1 bit-flip set0 set1 bit-flip set0 set1 bit-flip set0 set1 bit-flip

alu_operand_a_ex_o_tag ✓ ✓
check_s1_o_tag ✓ ✓
rf_reg[14] ✓ ✓ ✓ ✓
tcr_q ✓ ✓ ✓
tcr_q[0] ✓ ✓ ✓
tpr_q ✓
tpr_q[12] ✓
tpr_q[15] ✓
use_store_ops_ex_o ✓ ✓

fault is injected into alu_operand_b_ex_o_tag or alu_operand_a_ex_o_tag, from mux 6 to
gate 3 if a fault is injected into alu_operator_o_mode, from mux 7 to gate 3 if a fault is injected
into regfile_alu_waddr_ex_o_tag, from gate 8 to gate 3 if a fault is injected in the tag register
file (i.e., register rf_reg[15]) and from mux 11 to gate 3 if a fault is injected in either store_dest_
addr_ex_o_tag or use_store_ops_ex_o. Analysis of Figure 3.6 reinforces the results presented
in Table 3.7 where set to 0 and bit-flip fault types lead to successful attacks. As with the first
use case, the main cause is that the propagation paths are fully made of AND gates. As shown in
Table 3.7 alu_operator_o_mode register is sensitive to set to 0 and set to 1 fault types. Indeed,
this register determines the tag propagation according to TPR. The tag propagation is disabled
when a TPR field is set to ‘00’ and the output tag is set to 0 (i.e., trusted) when a TPR field is
set to ‘11’.

3.4.4 Third use case: Compare/Compute

Table 3.8 shows that 19 fault injections in 6 DIFT-related registers can lead to a successful
attack. Furthermore, it shows that 4 different cycles can be targeted for the attack to succeed.
The highest success rate is obtained with the bit-flip fault type, with 10 successes over 19. Faults
in rf_reg[14] and alu_operand_a_ex_o_tag are successful, since these registers store the tag
associated to variable a during tag propagation. check_s1_o_tag maintains one configuration
bit from tcr_q during tag checking. use_store_ops_ex_o drives a multiplexer to propagate the
value stored in alu_operand_a_ex_o_tag register to the tag checking module. For this case,
the critical registers can be found in previous case, alu_operand_a_ex_o_tag propagates the
tag of the tagged variable in the code (variable a). Observations for both tpr_q and tcr_q are
similar to those for the previous case studies. Finally, faults in tpr_q and tcr_q are successful,
since these registers maintain the propagation rules and the security policy configuration.

Figure 3.7 focuses on the three cycles, represented in red, corresponding to add a5,a4,a5
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Figure 3.7: Tag propagation in a computation case with the Compare/Compute use case

instruction (C statement (a+b)) decoding and execution in the context of the third use case. The
instruction add a5,a4,a5 is in decode stage during cycles 833 and 834 and the tag associated
to the untrusted variable a is retrieved from rf_reg[14]. In cycle 835, this addition is executed.
In parallel, variable a tag is propagated to the tag check logic unit, which behaviour is driven by
check_s1_o_tag through alu_operand_a_ex_o_tag. Since the security policy 2 prohibits the
use of untrusted data as a source operand of an arithmetic operation, an exception is raised.

Figure 3.7 illustrates the reason behind the sensitivity of registers rf_reg[14], alu_operand_
a_ex_o_tag and check_s1_o_tag highlighted in Table 3.8. Note that use_store_ops_ex_o
does not appear in Figure 3.7. This register drives a multiplexer leading to tag propagation
presented in Figure 3.7.

To further study the faults’ propagation, Figure 3.8 illustrates the logical relations between
the DIFT-related registers (yellow boxes) and control signals or processor registers (gray boxes)
driving the illegal instruction exception signal (red box). Figure 3.8 shows that a single fault
could lead to a successful injection, since all logic paths are built with AND gates. For instance,
if register rf_reg[14] is set to 0, the tag will be propagated from gate 8 to gate 10 and to mux 12.
Then, since mux 12 output drives one gate 3 output, the exception is disabled. From Figure 3.8,
seven fault propagation paths can be identified. We won’t go into detail here about the seven
different paths, as they were mentioned in case 2, bearing in mind that colour differentiation
must be taken into account (for example: alu_operand_a_ex_o_tag instead of store_dest_
addr_ex_o_tag from gate 1 to gate 3 if the fault is injected into tcr_q[0], through gate 3 if
a fault is injected into check_s1_o_tag, from gate 4 or gate 5 to gate 3 if a fault is injected

56



Section 3.5. Summary

Table 3.9: Results for bit reset for the baseline version

Crash Silent Delay Success Total Execution
time (h:min)

Buffer Overflow 0 320 1 9 (2.73%) 330 0:04
WU-FTPd 0 424 0 16 (3.64%) 440 0:47
Compare/Compute 0 213 0 7 (3.18%) 220 0:01

Table 3.10: Results for bit set for the baseline version

Crash Silent Delay Success Total Execution
time (h:min)

Buffer Overflow 0 320 7 3 (0.91%) 330 0:04
WU-FTPd 0 397 36 7 (1.59%) 440 0:48
Compare/Compute 0 213 5 2 (0.91%) 220 0:01

into alu_operand_b_ex_o_tag or alu_operand_a_ex_o_tag, from mux 6 to gate 3 if a fault
is injected into alu_operator_o_mode, from mux 7 to gate 3 if a fault is injected into regfile_
alu_waddr_ex_o_tag, from gate 8 to gate 3 if a fault is injected into rf_reg[14], and from mux
11 to gate 3 if a fault is injected into either alu_operand_a_ex_o_tag or use_store_ops_ex_
o. Analysis of Figure 3.8 supports the results presented in Table 3.8 where set to 0 and bit-flip
fault types lead to successful attacks. As with the first and second use cases, the main reason is
that the propagation paths are built entirely from AND gates.

3.5 Summary

In this chapter, we described the processor we focus on, with its implementation of a hardware
in-core DIFT. We described how it works and how to use the DIFT mechanism with the default
configuration. Then, we described the different use cases we choose to work with, in order to
analyse the DIFT behaviour and assess it against FIAs. Finally, we presented the vulnerability
assessment on these use cases using the D-RI5CY security mechanism. We have shown that this
DIFT implementation is vulnerable to FIAs within different registers depending on the fault
model and depending on the application, as different paths are used and so different registers
are going to be critical.

Tables 3.9, 3.10, 3.11 present the results obtained from the campaign with their respective
fault model. This vulnerability analysis revealed that the majority of weaknesses in this mecha-
nism are caused by single bit-flips, with 51 successful faults out of 95. Furthermore, the registers
involved in this mechanism are predominantly 1-bit registers, as they are used for the tag data
path. This indicates that, to effectively safeguard the mechanism, the primary focus should be
on protecting it against single bit-flip errors.
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Table 3.11: Results for a single bit-flip for the baseline version

Crash Silent Delay Success Total Execution
time (h:min)

Buffer Overflow 0 738 12 12 (1.57%) 762 0:11
WU-FTPd 0 946 41 29 (2.85%) 1016 01:52
Compare/Compute 0 491 7 10 (1.97%) 508 0:02
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Figure 3.8: Logic representation of tag propagation in a computation case
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FISSA – FAULT INJECTION SIMULATION

FOR SECURITY ASSESSMENT
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4.1 Introduction

This chapter introduces and presents a tool, called FISSA – Fault Injection Simulation for
Security Assessment –, created to automate fault injection attacks campaigns in simulation.
This work has been published in DSD 2024 [30]. The first section presents the state of the art
of existing tools for FIAs campaigns in simulation, using formal methods, or even to perform
real world attacks. The second section presents FISSA software architecture, details how FISSA
works, and presents how to extend it. The third section illustrates FISSA capacity through a
use case from Section 3.3. Finally, the last section discusses and draws some perspectives for the
tool’s development and usability.
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Table 4.1: Fault Injection based methods for vulnerability assessment comparison

References Cost Control over
fault scenarios Scalability Speed of

execution Realism Expertise

Formal Methods [144–147] Very low Very high Very low Low/Moderate Low Very high
Simulations [148–157] Very low Very high Low Low/Moderate Moderate Low
Actual FIAs [14, 95, 102, 158–160] Very high Very low Very high Very high Very high Very high

4.2 Simulation tools for Fault Injection

Addressing fault injection vulnerabilities is crucial. In general, fault attacks are conducted using
physical equipment. Nonetheless, another approach exists that leverages simulators for fault
testing. The main advantages of using simulators are they cost less money than physical setups,
it is easier to make them work as they do not need specific skills, and they can be used during
the conceptual stage.

This section presents recent works related to methods and tools for vulnerability assessment
when considering FIAs. For such vulnerability assessment, main strategies include actual fault
injections, formal methods and simulations. Another objective of fault injection in simulation
is to address safety [143]. Safety concerns revolve around unintended, accidental faults, with a
focus on system reliability and resilience. The aim is to verify the system’s capability to detect
and recover from these faults, ensuring that no catastrophic consequences occur as a result of
such failures. This process is crucial for validating the robustness of safety mechanisms in place.

Actual FIAs involve physically injecting faults into the target hardware using techniques such
as variations in supply voltage or clock signal [14, 160], laser pulses [14, 95], electromagnetic
emanations [14] or X-Rays [102]. This approach offers valuable insights into the real impact of
faults on hardware components. However, a significant drawback of actual fault injections is that
they demand considerable expertise to prepare the target, involving intricate setup procedures.
Additionally, this approach can only be executed once the physical circuit is available, potentially
delaying the vulnerability assessment process until later stages of development.

Formal methods provide an advantage with mathematical proofs, ensuring a rigorous verifi-
cation of the system’s behaviour during fault injection experiments. Formal methods approaches
such as [144] allow the analysis of a circuit design in order to detect sensitive logic or sequential
hardware elements. Arribas et al. [145], Barthe et al. [146] and Simon et al. [147] present formal
verification methods to analyse the behaviour of HDL implementations. However, this type of
tool usually suffers from restrictions limiting its actual usage on a complete processor. Con-
ventional formal approaches encounter scalability challenges due to limitations in verification
techniques. In particular, the circuit structure it can analyse is usually limited (e.g. if there is a
loop implemented in the design).

Many simulators for FIAs exist at different levels, to achieve different objectives, such as
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security at gate-level, cryptographic systems, study the impact of clock glitches, or even X-
Ray. They can use Artificial Intelligence (AI) to enhance the detection [150]. Another way to
simulate fault injections is to use QEMU (Quick EMUlator) [148, 149, 157]. QEMU is an open-
source machine that emulates the behaviour of a processor at a very fine-grain, using various
optimizations to keep execution speed as close as possible to native system execution. Bekele
et al. [148] present a survey of QEMU-based Fault Injection techniques. After discussing the
various techniques proposed in the state of the art, they classify into categories and compare
them. Fault Injections simulations can be performed at processor instructions level. Authors
of [150] explore the impact of FIAs on software security. They evaluate four open-source fault
simulators, comparing their techniques and suggest enhancing them with AI methods inspired
by advances in cryptographic fault simulation. Arribas et al. [152] introduces VerFI, a gate-level
granularity fault simulator for hardware implementations. For instance, it has been used to spot
an implementation mistake in ParTI [161]. However, this tool has been developed to check if
implemented countermeasures can really protect against fault injection on cryptographic imple-
mentations, but it cannot evaluate components such as registers or memories. FiSim [151] is an
open-source deterministic fault attack simulator prototype utilising the Unicorn Framework and
Capstone disassembler. Tebina et al. [153] introduce Ray-Spect, a tool to simulate fault injection
using parametric degradation of MOSFETs transistors, which is typical of X-ray fault injection.
Wang et al. [154] developed a framework for fault injection assessment at gate-level with design
specific security properties. Grycel et al. [155] present, SimpliFI, a simulation methodology to
test fault attacks on embedded software using a hardware simulation of the processor running
the software. It relies on post-layout netlist simulations to study the impact of fault injection
techniques such as clock glitches.

In this work, we focus on RTL simulations, which provides a controlled virtual environ-
ment for injecting faults. There are several solutions of simulations in an HDL simulator like
Questasim, Vivado, etc. Behavioural simulation is used to detect functional issues and ensur-
ing that the design behaves as expected. Post-synthesis simulation verifies that the synthesised
netlist matches the expected functionality. Timed simulation is used to ensure that the de-
sign meets timing requirements and can operate at the specified clock frequency. And finally,
post-implementation simulations are used to verify that the implemented design meets all re-
quirements and constraints, including those related to the physical layout on the target. Post-
synthesis, timed, and post-implementation simulations can be more difficult to apprehend. This
is because HDL synthesis alters the names of the various hardware elements, making it more
difficult to find the various elements targeted in the behavioural section. Behavioural simulation-
based fault injection offers the advantage of enabling designers to test their system at the early
beginning of the design cycle, providing valuable insights and uncovering potential vulnerabili-
ties early in the development process. However, a limitation lies in the potential lack of absolute
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fidelity to actual conditions, as simulations might not perfectly replicate all hardware intricacies,
introducing a slight risk of overlooking certain faults that could manifest in the actual hardware.

Table 4.1 shows a comparison between these three methods for vulnerability assessment when
considering FIAs regarding six metrics. These metrics are the financial cost of setting up the
fault injection campaign, the control over fault scenarios (how configurable are the scenarios),
scalability which refers to the method capacity to be applied to systems of different sizes or
complexities, speed of execution of the campaign, realism of the fault injection campaign and the
level of required expertise. Table 4.1 shows that no method is completely optimal. Each method
has its own advantages and disadvantages and must be chosen by the designer according to
the requirements and the available financial and human resources. Indeed, setting up an actual
fault injection campaign requires much more expertise in this domain and also requires costly
equipment, whereas setting up a simulation campaign can be easier for a circuit designer familiar
with HDL simulation tools. Table 4.1 shows that simulation offers a good compromise to assess
the security level of a circuit design. In particular, it provides an efficient solution for investigating
security throughout the design cycle, enabling the concept of “Security by Design”.

4.3 FISSA

This section presents our open-source tool, FISSA, available on GitHub [162] under the CeCILL-
B licence.

4.3.1 Main software architecture

FISSA is designed to help circuit designers to analyse, at the early beginning of the develop-
ment, the sensitivity to FIAs of the developed circuit. FISSA relies on behavioural simulations.
Figure 4.1 presents the software architecture of FISSA. It consists of three different modules:
TCL generator, Fault Injection Simulator and Analyser. The first and third modules correspond
to a set of Python classes.

The TCL generator, detailed in Section 4.3.3, relies on a configuration file and a target file
to create a set of parameterised TCL scripts. These scripts are tailored based on the provided
configuration file and are used to drive the fault injection simulation campaign.

Fault Injection Simulator, detailed in Section 4.3.4, performs the fault injection simulation
campaign based on inputs files from TCL generator for a circuit design described through HDL
files and memory initialisation files. For that purpose it relies on an existing HDL simulator such
as Questasim [163], Verilator [164], or Vivado [165] to simulate the design according to the TCL
script and generates JSON files to log each simulation.

The Analyser, detailed in Section 4.3.5, evaluates the outcomes of the simulations and gen-
erates a set of files that allows the designers to examine fault injection effects on their designs
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through various information.
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Figure 4.1: Software architecture of FISSA

Algorithm 1 shows a representation of a fault injection campaign. The algorithm requires
the name(s) of the use case(s) on which the campaign will be, a set of targets (i.e. hardware
elements into which a fault is to be injected), the number of bits of each target, the fault model
and the injection window(s) under consideration, which identify the period(s), in a time interval
between start (∆s) and end (∆e) in nanosecond, into which fault injections are carried out. The
number of bits for the campaign, will be called ’κ’, and ’κi’ the number of bits of one target. The
injection window will be used to calculate the number of cycles with the CPU period (Υcpu). So,
the number of cycles can be determined by nbCycles = (∆e −∆s)/Υcpu.

Then, it runs a first simulation with no fault injected, which is used as a reference for com-
parison with the following simulations to determine end-of-simulation statuses. Then, for each
target, each fault model and for each clock cycle within the injection window, the corresponding
simulation is executed, and the corresponding logs are stored in a dedicated file.

Customising end-of-simulation statuses allows for adaptation to the specific requirements of
each design assessment. To configure these statuses, adjustments need to be made either directly
in FISSA’s code or the HDL code. This process may involve evaluating factors such as:

• hardware element content (signals, registers, . . . ),

• simulation time (e.g. the simulation exceeds a reference number of clock cycles),

• simulation’s end (e.g. an assert statement introduced in the HDL code is reached)
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Algorithm 1 Simulated FIAs campaign pseudocode
Require: targets← list(targets)
Require: faults← list(fault_model)
Require: windows← list(injection_windows)

1: ref_sims = simulate()
2: for target ∈ targets do
3: for fault ∈ faults do
4: for cycle ∈ windows do
5: logs = simulate(target, fault, cycle)
6: end for
7: end for
8: end for

4.3.2 Supported fault models

A set of fault models has already been integrated into FISSA for different needs. For a given
fault injection campaign, the relevant fault model is defined in the input configuration file and
is applied to targets during the simulation phase. Currently, supported fault models are:

• target set to 0/1: for each cycle of the injection window and for each target, we set them
individually to 0 or 1, in turn exhaustively (nbSimulations = nbCycles ∗ nbTargets),

• single bit-flip in one target at a given clock cycle: for each cycle of the injection window,
we do a bit-flip for each bit of every target exhaustively (nbSimulations = nbCycles ∗ κ),

• single bit-flip in two targets at a given clock cycle: we select one cycle and a couple of tar-
gets’ bits (it can be the same target at two different bits) and we bit-flip these two bits
(nbSimulations = nbCycles ∗ Cκ

2 ; with κ, the sum of the bits of each target),

• single bit-flip in two targets at two different clock cycles: we select two different cycles and
a couple of targets’ bits (it can be the same target at two different bits) and we bit-flip
these two bits (nbSimulations = CnbCycles

2 ∗ Cκ
2 ),

• exhaustive multi-bits faults in one target at a given clock cycle: we select one cycle and
one target, and we try exhaustively each combination of bits (for example for a 2-bit
target, it would be: 00, 01, 10, 11) and we set the target at each value (nbSimulations =
nbCycles∗2κi). It is worth nothing that for this fault model, we only take targets between
1 and 16 bits to avoid very big numbers of simulations as 232 would be too long to simulate
exhaustively,

• exhaustive multi-bits faults in two targets at a given clock cycle: we select one cycle and
two targets, and we try exhaustively each combination of bits (for example for a 2-bit
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target, it would be: 00, 01, 10, 11) for each target and we set them to each value (nbSimu-
lations = nbCycles ∗ 2κ1i ∗ 2κ2i). The user must be vigilant about the size of his targets, as
a register can be 32-bit or even up to 64-bit. Exhaustively testing each possible value for
such large registers can be extremely time-consuming. For a 32-bit register, for example,
the total number of simulations would reach 232 (around 4 billion), which could lead to an
astronomical amount of time and computational effort.

4.3.3 TCL Generator

Listing 4.1: Example of a FISSA configuration file
1 {
2 " name_simulator " : " modelsim " ,
3 " path_tcl_generat ion " : "PATH/" ,
4 " path_fi les_sim " : "PATH/ s i m u _ f i l e s /" ,
5 " path_generated_sim " : "PATH/ s i m u _ f i l e s / g e n e r a t e d _ s i m u l a t i o n s /" ,
6 " path_results_sim " : "PATH/ s i m u _ f i l e s / r e s u l t s _ s i m u l a t i o n s /" ,
7 " path_simulation " : [ "PATH_SIMU/" ] ,
8 " prot " : "wop " ,
9 " v e r s i o n " : 1 ,

10 " name_reg_file_ext_wo_protect " : "/ f a u l t e d −re g . yaml " ,
11 " a p p l i c a t i o n " : [ " b u f f e r _ o v e r f l o w " , " s e c r e t F u n c t i o n " , " propagationTagV 2 " ] ,
12 " name_results " : {
13 " b u f f e r _ o v e r f l o w " : " B u f f e r Overflow " ,
14 " s e c r e t F u n c t i o n " : "WU−FTPd" ,
15 " propagationTagV 2 " : " Compare/Compute "
16 } ,
17 " threat_model " : [
18 " s i n g l e _ b i t f l i p _ s p a t i a l "
19 ] ,
20 " m u l t i _ f a u l t _ i n j e c t i o n " : 2 ,
21 " a v o i d _ r e g i s t e r " : [ ] ,
22 " a v o i d _ l o g _ r e g i s t e r s " : [ ] ,
23 " l o g _ r e g i s t e r s " : [ ] ,
24 " injection_window " : {
25 " b u f f e r _ o v e r f l o w " : [
26 [ 137140 , 137380 ]
27 ] ,
28 " s e c r e t F u n c t i o n " : [
29 [ 2099100 , 2099420 ]
30 ] ,
31 " propagationTagV 2 " : [
32 [ 33300 , 33460 ]
33 ]
34 } ,
35 " c y c l e _ r e f " : 100 ,
36 " cpu_period " : 40 ,
37 " batch_sim " : {
38 " b u f f e r _ o v e r f l o w " : 2000 ,
39 " s e c r e t F u n c t i o n " : 2000 ,
40 " propagationTagV 2 " : 2000
41 } ,
42 " m u l t i _ r e s _ f i l e s " : {
43 " b u f f e r _ o v e r f l o w " : 8 ,
44 " s e c r e t F u n c t i o n " : 8 ,
45 " propagationTagV 2 " : 8
46 }
47 }

The TCL Generator is used to generate the set of TCL script files which drive the fault
injection simulator. This module requires two input files. Figure 4.2 details the TCL Generator
software architecture. Each blue box represents a python class used to generate the set of output
TCL scripts. The initialisation class gets inputs from a configuration file. This JSON-formatted
file includes various parameters such as the targeted HDL simulator, the considered fault model
and the injection window(s). Furthermore, it encompasses parameters such as the clock period
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Listing 4.2: Example of a FISSA target file
1 −−−
2 ## FETCH
3 FETCH:
4 −
5 name : / tb / top_i / core_region_i /RISCV_CORE/ i f _ s t a g e _ i /pc_id_o_tag
6 width : 1
7 −
8 name : / tb / top_i / core_region_i /RISCV_CORE/ i f _ s t a g e _ i / pc_if_o_tag
9 width : 1

10
11 ## DECODE
12 DECODE:
13
14 ## RF TAG
15 RF_TAG:
16
17 ## EXECUTE
18 EXECUTE:
19
20 ## CSR
21 CSR:
22
23 ## Load S t o r e Unit
24 LSU :
25 . . .

(in ns) of the HDL design and the maximum number of simulated clock cycles used to stop the
simulation in case of divergence due to the injected fault. Moreover, one extra parameter defines
the quantity of simulations per TCL file, allowing a simulation parallelism degree. Listing 4.1
shows an extract of a configuration file used for our fault injection campaigns. Listing 4.2 shows
an extract from a target file according to the configuration file provided previously. This file lists
each stage of the RISC-V core, and for each the HDL path of our targets are written. Here, in
this example, only the list of targets for the instruction fetch stage is listed.

The Targets file contains, in YAML format, the list of the circuit elements (e.g. registers or
logic gates) that need to be targeted during the fault injection campaign. For each target, its HDL
path and bit-width are specified. TCL Script Generator class gets the configuration parameters
from Initialisation class, reads the Targets’ file and calls three others classes. The first one, Basic
Code Generator, undertakes the fundamental generation of TCL code for initialising a simulation,
running a simulation, and ending a simulation. The second one, Fault Generator, produces the
TCL code related to fault injection. The TCL Script Generator provides specific parameters to
the Fault Generator to produce code for a designated set of targets and a specified set of clock
cycles for fault injection. The third one, Log Generator, produces the TCL code to produce logs
after each simulation. Logs comprise the simulation’s ID, fault model, faulted targets, injection
clock cycle(s), end-of-simulation status, values for all targets, and the end-of-simulation clock
cycle. This data constitutes the automated aspect of logging. Finally, the TCL Script Generator
outputs a set of TCL files, each one corresponds to a batch of simulations. This allows the
user to perform a per batch results analysis. It is worth noting that each batch starts with a
reference simulation, which means a simulation without any fault injected. This approach allows
for obtaining comparative results after a fault has occurred, making it possible to determine
the specific effects and consequences of the injected fault. By comparing the system’s behaviour
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before and after the fault injection, it becomes easier to identify what was impacted and how
the fault influenced the system’s operation.
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Figure 4.2: Software architecture of the TCL Generator module

Algorithm 2 depicts the pseudocode of a simulation of a fault injection, showcasing require-
ments, and each state with essential parameters. Additionally, the corresponding Python class
from Figure 4.2 is added for each line. Line 5 in Algorithm 1 corresponds to Algorithm 2. This
algorithm is executed multiple times with different inputs to build a TCL script.

Algorithm 2 FIAs simulation pseudocode
Require: target
Require: cycle
Require: fault_model

1: tcl_script = init_sim(fault_model, cycle, target) // generated by Basic Code Generator
2: tcl_script+ = inject_fault(fault_model) // generated by Fault Generator
3: tcl_script+ = run_sim() // generated by Basic Code Generator
4: tcl_script+ = log_sim(fault_model) // generated by Log Generator
5: tcl_script+ = end_sim() // generated by Basic Code Generator
6: tcl_file.write(tcl_script) // append and write the simulation data inside the TCL file

4.3.4 Fault Injection Simulator

The Fault Injection Simulator (Figure 4.3) mainly relies on an existing HDL simulator to perform
simulations by executing the TCL scripts produced by the TCL generator. The log files, in JSON
format, are generated by the TCL script for each simulation. This file encompasses data such
as the current simulation number, the executed clock cycle count, the values of the targets’ file,
the targets faulted, the fault model and the end-of-simulation status.
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Listing 4.3 shows a simplified example of an output file from a simulation. Many lines are
omitted to simplify the text and its comprehension. In this example, we have the result of the
first simulation of the campaign. The fault model is a single bit-flip in one target at a given
clock cycle, and the target, which is a register in this case, pc_id_o_tag, has a size of one bit. A
fault has been injected at the period time of 137,140 ns. The omitted lines, at line 7, include all
registers from the register file, all register file tags, and all registers from the target list. The last
line, line 14, shows that this simulation ended with a status equal to 3 (i.e., exception delayed
from the reference simulation).
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Figure 4.3: Fault injection simulator architecture

It is worth noting that the set of calls to the generated TCL scripts has to be integrated into
the designer’s existing design flow, allowing the design compilation, initialisation, and manage-
ment of input stimuli. The use of TCL scripts simplifies such an integration. Once all the fault
injection simulations have been performed, the log files can be sent to the Analyser which, is
described in the following subsection.

4.3.5 Analyser

The Analyser (Figure 4.4) reads all log files and generates a set of LATEX tables (.tex files)
and/or sensitivity heatmaps (in PDF format) according to the fault models, allowing the user to
identify the sensitive hardware elements in the circuit design. The generated tables can be cus-
tomised through modification in the Analyser Python code. The current configuration captures
and counts the diverse end-of-simulation status. Heatmaps are generated for multi-target fault
models. For instance, when considering a 2 faults scenario disturbing two hardware elements,
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Listing 4.3: Extract of an example of a FISSA output log JSON file
1 " s imulation_ 1 " : {
2 " c y c l e _ r e f " : 100 ,
3 " cycle_ending " : 4 ,
4 "TPR" : " 32 ’ h0000a8a2 " ,
5 "TCR" : " 32 ’ h00341800 " ,
6 " r f 1 " : " 32 ’ h000006 f c " ,
7 ( . . . )
8 " f a u l t e d _ r e g i s t e r " : "/ tb / top_i / core_region_i /RISCV_CORE/ i f _ s t a g e _ i /pc_id_o_tag " ,
9 " s i z e _ f a u l t e d _ r e g i s t e r " : 1 ,

10 " t h r e a t " : " b i t f l i p " ,
11 " b i t _ f l i p p e d " : 0 ,
12 " c y c l e _ a t t a c k e d " : " 137140 ns " ,
13 " simulation_end_time " : " 137300 ns " ,
14 " status_end " : 3
15 }

a 2-dimension heatmap allows the user to identify sensitive couples of hardware elements lead-
ing to a potential vulnerability. Their configuration can be adapted by modifying the Analyser
Python code. Heatmaps generation is based on Seaborn [166] which relies on Matplotlib [167].
This library provides a high-level interface for drawing attractive and informative statistical
graphics and save them in different formats like PDF, PNG, etc. In the current configuration,
heatmaps highlight the targets leading to a specific end-of-simulation status (e.g. a status iden-
tified by the designer as a successful attack). Once the results have been generated, they can
easily be inserted into a vulnerability assessment report.
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Figure 4.4: Analyser architecture

4.3.6 Extending FISSA

In order to extend FISSA for integrating an additional fault model, some modifications to the
TCL Script Generator, the Basic Code Generator, the Fault Generator and Log Generator mod-
ules are necessary. It requires the extension of the init_sim, inject_fault and log_sim functions
presented in Algorithm 2 to implement the new fault model from initialisation to logging. For
instance, these extensions should define the targets for each simulation, the impact of the in-
jections (set to 0/1, bit-flip, random, etc) and the set of data to be logged for this fault model.
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The Log Generator automates the extraction of specific segments from the ongoing simulation.
However, it is customisable, enabling the modification of logged elements, such as incorporating
memory content or a list of signals.

Analyser can be extended to produce additional LATEX tables, heatmaps or any other way
of results visualisation. This can be achieved by either modifying the existing methods or by
developing new ones.

An integral aspect of expanding FISSA involves adjusting functions depending on the used
HDL simulator. Despite the definition of the TCL language, specific commands vary between
simulators. For instance, in Questasim, injecting a fault into a target can be accomplished with
the command: “force <object_name><value>-freeze -cancel <time_info>” [168], whereas in
Vivado, the equivalent command is: “add_force <hdl_object><values>-cancel_after <time_
info>” [169]. There are some subtle differences between these two software applications that
need to be taken into consideration in order to extend FISSA. These distinctions may affect the
functionality or compatibility, so addressing them is crucial for a successful adaptation.

4.4 Use case example

This section presents a case study to demonstrate the use of FISSA in real conditions. It focuses
on the evaluation of the robustness of the DIFT mechanism integrated in the D-RI5CY processor
with the Buffer overflow use case from Section 3.3.

4.4.1 FISSA’s configuration

This subsection presents FISSA’s configuration for the addressed use case. We have defined
four end-of-simulation statuses, which will be utilised to automatically generate results tables.
Examples of these tables will be provided in Subsection 4.4.2. The initial status is labelled as
a crash (status 1), indicating that the fault injection has caused a deviation in program flow
control, leading the processor to execute instructions different from those expected. The second
status, identified as a silent fault (status 2), signifies that a fault has occurred but has not
impacted the ongoing simulation behaviour. Status 3, termed a delay, denotes that the fault has
delayed the DIFT-related exception, meaning the exception is not raised at the same clock cycle
as in the reference simulation. The last status refers to a success (status 4), indicating a bypass
of the DIFT mechanism and thereby marking a successful attack. This status corresponds to
the detection of the end of the simulated program, with no exception being raised.

In the input configuration file, a single injection window is set between cycles 3428 and 3434,
the maximum number of simulated clock cycles is set to 100 from the start of the injection
window, this allows us to detect if there were a control flow deviation, the design period is set
to 40 ns, the number of simulations per TCL script is set to 2,200. The considered fault models
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Figure 4.5: Extract of the heatmap generated according to the single bit-flip in two targets at a
given clock cycle fault model

are four of the seven fault models defined in Section 4.3.2: target set to 0, target set to 1, single
bit-flip in one target at a given cycle, and single bit-flip in two targets at a given cycle.

Four FIAs simulation campaigns are performed to evaluate the design against the four fault
models. We choose to log the values of the Targets’ file, the simulation’s number, targets’ value
after the injection, the injection cycle and the end-of-simulation status. The Targets’ file is filled
with the 55 registers of the DIFT security mechanism, representing a total of 127 bits.

4.4.2 Experimental results

This section presents results obtained using FISSA on the considered use case. All experiments
are performed on a server with the following configuration: Xeon Gold 5220 (2,2 GHz, 18C/36T),
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Table 4.2: Results of fault injection simulation campaigns

Fault model Crash Silent Delay Success Total Simulation
time

Set to 0 0 320 1 9 (2.73%) 330 0h04
Set to 1 0 320 7 3 (0.91%) 330 0h04

Single bit-flip in one target at a given clock cycle 0 738 12 12 (1.57%) 762 0h11
Single bit-flip in two targets at a given clock cycle 0 45,097 1,503 1,406 (2.93%) 48,006 13h43

Table 4.3: Buffer overflow: success per register, fault type and simulation time

Cycle 3428 Cycle 3429 Cycle 3430 Cycle 3431 Cycle 3432

set 0 set 1 bit-flip set 0 set 1 bit-flip set 0 set 1 bit-flip set 0 set 1 bit-flip set 0 set 1 bit-flip

pc_if_o_tag ✓ ✓
memory_set_o_tag ✓ ✓

rf_reg[1] ✓ ✓
tcr_q ✓ ✓ ✓ ✓ ✓

tcr_q[21] ✓ ✓ ✓ ✓ ✓
tpr_q ✓ ✓ ✓ ✓

tpr_q[12] ✓ ✓
tpr_q[15] ✓ ✓

128 GB RAM, Ubuntu 20.04.6 LTS and Questasim 10.6e.
Table 4.2 summarises the outcomes of the four previously described fault injection campaigns,

with each row representing a distinct fault model. Table 4.2’s columns delineate the potential
end statuses for each simulation. This table is an essential tool for the designers, enabling them
to analyse the vulnerabilities associated with each fault model within their design. Consequently,
the designers can determine the necessity for additional protective measures or design alterations.

For instance, Table 4.2 illustrates that the ’set to 1’ fault model results in only three suc-
cessful outcomes, which represent 0.91% of the total number of simulations, whereas the ’single

bit-flip in two targets at a given clock cycle’ fault model leads to 1,406 successes,
which represent 2.93% of the total number of simulations. These findings guide the designers in
evaluating the significance of protecting against specific fault models.

To further assess vulnerabilities, the designers can utilise Table 4.3, which provides detailed
information on the register and cycle locations of faults for models with fewer successful out-
comes. For fault models with multiple registers faulted or with a high number of successes,
where the table may become unwieldy, Figure 4.5 serves as a more accessible reference. This
figure helps in visualising and interpreting the spatial distribution of vulnerabilities effectively.

Table 4.3 is produced by FISSA and details the successes from three distinct fault injection
campaigns: set to 0, set to 1 and single bit-flip in one target at a given cycle.
Table 4.3 specifies successes for each fault model, correlated with the cycle and the affected
target. For example, a set to 0 fault at cycle 3428 on tcr_q would lead to a successfully at-
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tack. It highlights which targets are sensitive to fault attacks at a cycle-accurate and bit-accurate
level, providing the designers precise information on critical elements requiring protection based
on their specific needs. Table 4.3 only covers the most basic fault models. Indeed, producing a
table for more complex scenarios, such as simultaneous faults in two targets within a same or
multiple cycles, would be intricate and challenging to interpret. Consequently, we opted for an
alternative method and developed a heatmap representation (e.g. Figure 4.5).

To further explore the impact of FIAs on a design, a designer can study heatmaps generated
by FISSA. These heatmaps are tailored to a fault model with two faulty registers, where each
matrix intersection shows the number of successes with that target pair.

Figure 4.5 shows an extract of the heatmap generated for the single bit-flip in two targets at a
given clock cycle fault model. For simplicity, only 5 registers are represented. The full figure will
be presented in Chapter 6. The colour scale represents the number of fault injections targeting
a couple of hardware elements (i.e. registers for this use case) leading to a success as defined
in Subsection 4.4.1. We can note that this colour scale, in our case, range from 0 to 272. This
figure highlights the registers that are critical to a specific fault model, enabling the designer
to evaluate the design and determine where protection is needed and at what level. It provides
a clear indication of which areas require minimal protection and which ones demand a very
high level of security. All of this information allow the designer to prioritise countermeasures
according to allocated budget, protection requirements, etc. To give an example, it can be noted
that the horizontally displayed registers tcr_q and tpr_q are critical registers, because a success
will occur regardless of the associated register. Similarly, the registers shown vertically, memory_

set_o_tag, pc_if_o_tag, and rf_reg[1], are also critical because they lead to many successes
with almost all tested registers.

To provide an analytical perspective from the buffer overflow use case presented in Sec-
tion 3.3, the five previously mentioned registers are critical as they either store the DIFT secu-
rity policy configuration (tpr_q and tcr_q) or store (rf_reg[1] represents the tag associated
with the value of the Program Counter, which is stored in the register file at index 1 for RISC-V
ISA) and propagate the tag (pc_if_o_tag) associated with the PC. This is particularly impor-
tant in our example, which demonstrates a ROP attack with a buffer overflow. The colour scale
indicates the impact of the fault injections on the combination of registers tested. For example,
a pair associated with a high number such as 272, 124, and 135 for tcr_q and tpr_q are very
high priority as they lead to 37.77% success on this fault model (i.e. with all registers taken into
account, Table 4.2). In addition, we can see that a register produces a low number of successes,
such as rf_reg[2]; hence, it is then not the highest priority for protection for the designer.

While Table 4.2 provides the total number of successes for each fault model and Table 4.3
gives the successes for each fault model (set to 0, set to 1, and a single bit flip in a target at a
given cycle) correlated with the cycle and affected target, Figure 4.5 shows that fault injections
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in 246 register pairs result in a success. This information allows the designer to focus on specific
simulation traces to understand the effect(s) of the fault(s) and improve the robustness of his
design by implementing adapted countermeasures.

4.5 Discussion and Perspectives

In this section, we will discuss this proposed tool and draw some perspectives. In terms of
execution time, we did in total around 24,000,000 simulations for approximatively 3 seconds for
each simulation in average spanning from initialisation to data recording. In order to optimise
the time required for the execution of these simulations, it was decided that the execution would
be divided between several servers. This enabled the running of these simulations on up to 17
instances in parallel on three different servers. The execution time is contingent upon various
parameters, including the design’s size, the specific simulation case, and the number of targets
involve. Actual FIAs are faster than simulations, taking about 0.35 seconds per injection in our
tests, relying on the ChipWhisperer-lite platform for clock glitching injection. While simulations
may be slower, they offer the benefit of not requiring an FPGA prototype or the final circuit.
Furthermore, it allows integrating vulnerability assessment in the first stages of the development
flow and provides a rich set of information for the designer in order to understand sources of
vulnerabilities in his design.

As perspectives, we plan to extend FISSA to support new fault models and HDL simula-
tors such as Vivado or Verilator. Additionally, we intend to enhance integration into the design
workflow by adding more automation. This may include the management of HDL sources com-
pilation, design’s input stimuli or the development of a graphical user interface to improve the
overall user experience.

4.6 Summary

In this chapter, we presented FISSA (Fault Injection Simulation for Security Assessment), our
advanced and versatile open-source tool designed to automate fault injection campaigns. FISSA
is engineered to seamlessly integrate with renowned HDL simulators, such as Questasim. It
facilitates the execution of simulations by generating TCL scripts and produces comprehensive
JSON log files for subsequent security analysis.

FISSA empowers designers to evaluate their designs during the conceptual phase by allowing
them to select specific assessment parameters, including the fault model and target components,
tailored to their unique requirements. The insights gained from the results generated by this
tool enable designers to enhance the security of their designs, thus adhering to the principles of
Security by Design.
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5.1 Introduction

Previous chapters have shown that the D-RI5CY’s DIFT security mechanism is vulnerable to
fault injection attacks, mainly due to single-bit flips. This D-RI5CY essentially uses single-bit
registers, as it relies on 1-bit tags.

In this chapter, we present three countermeasures in order to protect the DIFT against FIAs.
The first countermeasure implemented to detect and prevent the use of corrupted data is simple
parity. We selected the simple parity code as the error detection countermeasure because of
its suitability and limited overhead. However, parity codes are limited in that they can only
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detect, but not correct, single-bit errors. The second countermeasure is implemented to detect
any single-bit errors that may occur, but also to correct them without time overhead. With
this countermeasure, we want to correct to the nearest cycle so that the fault cannot propagate
and show to a potential attacker that the fault he injected had no effect on the system. The
third countermeasure is called SECDED for Single Error Correction, Double Error Detection.
This protection is a Hamming Code extended with a single parity bit to allow the detection of
double-bit errors while being able to correct single-bit errors. This chapter presents the work
done during a 4-month research stay, funded by the Collège Doctoral de Bretagne, GDR ISIS
(CNRS), and the Université Bretagne Sud, within the ALaRI laboratory (Advanced Learning
and Research Institute) in the Università della Svizzera Italiana in Lugano, Switzerland. This
work has been published in ISVLSI 2024 [31].

The first section presents the different considered fault models. Then, the second section
presents simple parity and details its implementation. Afterwards, the third section presents
Hamming Code principles, with a simple example, and details our implementation. The fourth
section presents SECDED with an example and gives an overview on our implementation. Fi-
nally, we discuss these countermeasures and compare them.

5.2 Fault models considered in this chapter

In Chapter 3, we assessed the D-RI5CY design by considering single bit-flip in one register at a
given clock cycle, bit reset, and bit set fault models. The conclusion of this chapter was that the
D-RI5CY is vulnerable mainly to single bit-flip, due to the fact that this DIFT design is mostly
built around 1-bit registers for tag propagation.

In this chapter, we consider an attacker able to inject faults into DIFT-related registers,
leading to single bit-flips at any position of the targeted register. To reach this objective, any
DIFT-related register maintaining 1-bit tag value, driving the tag propagation or the tag update
process or maintaining the security policy configuration can be targeted. Studies presented
in [170, 171] have shown that such precise single bit-flip attacks targeting registers can be
performed using, for example, laser shots. We also consider an attacker able to inject a single
bit-flip in two registers at two distinct clock cycles, with a minimum delay of one clock cycle.
Nowadays, more and more platforms exist to perform multi-bits faults on different targets [172,
173]. These platforms are helping to spread the use of this type of attack, thus we should also
be forging our protection around these kinds of threats.
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Table 5.1: D-RI5CY Registers Details List

Register Name Module Size Group
pc_id_o_tag Instruction Fetch Stage 1 Gr5
pc_if_o_tag Instruction Fetch Stage 1 Gr5

alu_operand_a_ex_o_tag Instruction Decode Stage 1 Gr5
alu_operand_b_ex_o_tag Instruction Decode Stage 1 Gr5
alu_operand_c_ex_o_tag Instruction Decode Stage 1 Gr5

alu_operator_o_mode Instruction Decode Stage 2 Gr5
check_d_o_tag Instruction Decode Stage 1 Gr5

check_s1_o_tag Instruction Decode Stage 1 Gr5
check_s2_o_tag Instruction Decode Stage 1 Gr5

is_store_post_o_tag Instruction Decode Stage 1 Gr5
memory_set_o_tag Instruction Decode Stage 1 Gr5

regfile_alu_waddr_ex_o_tag Instruction Decode Stage 5 Gr4
register_set_o_tag Instruction Decode Stage 1 Gr5

store_dest_addr_ex_o_tag Instruction Decode Stage 1 Gr5
store_source_ex_o_tag Instruction Decode Stage 1 Gr5

use_store_ops_ex_o Instruction Decode Stage 1 Gr5
rf_reg[0] Register File Tag 1 Gr3
rf_reg[1] Register File Tag 1 Gr3
rf_reg[2] Register File Tag 1 Gr3

. . . Register File Tag . . . Gr3
rf_reg[30] Register File Tag 1 Gr3
rf_reg[31] Register File Tag 1 Gr3

rs1_o_tag Execute Stage 1 Gr5
tcr_q Control and Status Registers 32 Gr1
tpr_q Control and Status Registers 32 Gr2

data_type_q_tag Load/Store Unit 2 Gr5
data_we_q_tag Load/Store Unit 1 Gr5

rdata_offset_q_tag Load/Store Unit 2 Gr5
rdata_q_tag Load/Store Unit 4 Gr5
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5.3 Simple Parity

Parity codes represent one of the simplest and most fundamental methods for error detection in
digital communication systems. Utilised across a wide range of applications, parity codes help
to ensure data integrity by adding a single parity bit to a block of data. This bit acts as a basic
error-detection mechanism, enabling the identification of single-bit errors during transmission.
Parity codes are commonly classified into two types: even parity and odd parity. In an even
parity system, the parity bit is set such that the total number of 1s in the data block, including
the parity bit, is even. Conversely, in an odd parity system, the parity bit is adjusted so that
the number of 1 is odd.

5.3.1 Simple parity in a nutshell

The key advantage of parity codes lies in their simplicity and low overhead. A single parity bit,
added to each data block, is sufficient to detect any single-bit error in the block. This one bit
stores the parity of the initial message. Figure 5.1 shows how the data, in blue, and the parity
bit, in red, are associated to form an encoded data.

d6 d5 d4 d3 d2 d1 d0 p0

Parity bit

Figure 5.1: Simple Parity – functioning

Equation 5.1 shows how the parity bit is computed. Each bit of the initial message is XOR’d
to calculate parity.

p0 = d0 ⊕ d1 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d6 (5.1)

Figures 5.2a and 5.2b show an example of a message with its parity bit. The message is
0b1001101. Hence, as there is an even number of ’1’, the parity bit is set to ’0’.

Figures 5.2c and 5.2d present, respectively, two examples of when a fault occurs and when two
faults happen. In the first example, Figure 5.2c, the bit d2 (from Figure 5.1), in red, is faulted.
As the faulted message is 0b1001001, it means that the new calculated parity bit value should be
1. Hence, the fault will be detected as the parity bit differs from the original computed message
(Figure 5.2b). In the second case, two faults happen in the message at bits d2 and d5 (from
Figure 5.1). So, the faulted message is 0b1101001, then, when the new parity bit is calculated,
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1 0 0 1 1 0 1 ?

Parity bit

(a) Initial message

1 0 0 1 1 0 1 0

Parity bit

(b) Message with its parity bit

1 0 0 1 0 10 0

Parity bit

(c) Single-bit fault inside the message

1 0 0 1 0 11 0 0

Parity bit

(d) Two single-bit faults inside the message

Figure 5.2: Example of a simple parity calculation and its fault detection capacity

the parity bit value will not change as there is still an even number of 1 compared to the initial
message. This shows the limitation of this error detection code.

5.3.2 Implementation: Minimisation of redundancy bits

In order to implement simple parity, we decided, in a first approach, to optimise the number
of parity bits. We had different choices, but we decided to form five groups. These groups are
composed of one or more register according to their criticality. Table 5.1 presents all 55 registers
of the D-RI5CY mechanism with their size (in number of bits) and the group in which they are
associated with. Each colour represents a different HDL module. Firstly, the two registers that
contain the security policy, TCR and TPR, are highly critical. As a result, we have chosen to
form a separate group for each of them. Although these registers are 32 bits long, only 22 bits
are fully utilised in the current implementation, making bits 22 to 31 unnecessary. Therefore, we
have decided not to protect these unused bits or include them in parity calculations. Secondly,
the third logical group consists of keeping the 32 registers of the register file tag together. Since
these registers are already grouped, it makes sense to maintain this grouping. This leaves us
with one 5-bit register, sixteen 1-bit registers, three 2-bit registers, and one 4-bit register. The
5-bit register is used to store the tag destination address, which is critical. As such, we have
decided to create a dedicated group for it. The remaining 20 registers, which total 26 bits, are
combined into a fifth group. Table 5.2 shows the five groups formed to implement the protection
for 107 bits in total. One parity bit protects each group.

Figure 5.3 presents our proposed implementation for the simple parity. This implementation
is straightforward. To protect a register (shown in blue), the input is directed simultaneously to
both the protected register and an encoder (in green). The encoder calculates the parity using
combinatorial logic, storing the resulting parity bit in a separate register, depicted in salmon-red
in the figure. The parity bit is stored in this register during the same cycle as the input value is
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Table 5.2: DIFT-related protected registers – simple parity

Protected register Number of
bits

Number of
protected bits

Number of
parity bits

Group 1 TCR 32 22 1
Group 2 TPR 32 22 1
Group 3 Register File Tag 32 32 1
Group 4 Tag destination address 5 5 1

Group 5
16×1-bit registers
3×2-bit registers
1×4-bit register

26 26 1

Total 127 107 5

stored in the protected register. Subsequently, the decoder computes the parity of the protected
register and compares it with the parity bit stored in the parity bit register. If a difference is
detected, it indicates the injection of a fault, which causes an alert signal to be raised.

input

Encoder

Register

Parity bit Decoder

n

n

1 1

1

output

error

detected

Figure 5.3: Implementation of simple parity

5.4 Hamming Codes

In digital communication and error correction theory, Hamming Codes represent a pioneering
development in ensuring data integrity during transmission over unreliable channels. Developed
by Richard Hamming in 1950 [174], this class of error-correcting codes is designed to detect and
correct single-bit errors and detect, without the correction part, two-bit errors. The Hamming
Code is a linear block code that enhances data transmission reliability by introducing redundancy
in a structured manner.

The importance of Hamming Codes lies not only in their ability to maintain the integrity
of data but also in their efficiency relative to other early error correction schemes. As such,
Hamming Codes have found wide application in areas where high data accuracy is required,
such as computer memory systems, telecommunications, and satellite communication. Despite
the emergence of more sophisticated error-correcting codes in modern systems, the simplicity and
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effectiveness of Hamming Codes make them a foundational topic in the study of error correction
algorithms.

5.4.1 Hamming Code in a nutshell

d6 d5 d4 d3 d2 d1 d0r3 r2 r1 r0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

Redundancy bits

Figure 5.4: Hamming Code (11,7) – functioning

The fundamental principle behind the Hamming Code is the strategic insertion of r redun-
dancy bits at specific positions within a data block of d bits, such that 2r ⩾ d + r + 1. These
parity bits are used to perform checks on subsets of data bits, allowing the receiver to identify
and, in certain cases, correct erroneous bits. The placement and calculation of the parity bits
follow a binary positional system (1, 2, 4, 8, 16, . . . ), which forms the core of the error detection
and correction mechanism. For example, for an 8-bit word it needs four redundancy bits while
for a 64-bit word, it needs only 7 redundancy bits. By positioning the redundancy bits at the
indexes of powers of two, it is then possible to correct an error if one is detected. Thus, for exam-
ple, Hamming Code (11,7) owns seven bits of data (d0− d6) and four redundancy bits (r0− r3).
Data bits and redundancy bits are placed according to Figure 5.4. The most common Hamming
Code is the (7,4), which uses four data bits and three redundancy bits. For the Hamming Code
(11,7) (Figure 5.4), redundancy bits are computed according to Equation 5.2. This equation
calculation is also represented in Figure 5.5. For example, if the initial message to be sent is
0b1001101 in binary, the redundancy bit r0 will be computed as r0 = d0 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6.
Thus, r0 will be equals to 1 as depicted in Figure 5.5b. It is worth noting that this code is not
fully used, because with four redundancy bits, Hamming Code is able to protect up to eleven
data bits to form Hamming Code (15,11).

r0 = d0 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6

r1 = d0 ⊕ d2 ⊕ d3 ⊕ d5 ⊕ d6

r2 = d1 ⊕ d2 ⊕ d3

r3 = d4 ⊕ d5 ⊕ d6

(5.2)
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1 0 0 1 1 0 1r3 r2 r1 r0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

Redundancy bits

(a) Initial message

1 0 0 1 1 0 1r3 r2 r1 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

r0

(b) Calculation of redundancy bit r0

1 0 0 1 1 0 1r3 r2 0 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

r1

(c) Calculation of redundancy bit r1

1 0 0 1 1 0 1r3 0 0 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

r2

(d) Calculation of redundancy bit r2

1 0 0 1 1 0 11 0 0 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

r3

(e) Calculation of redundancy bit r3

Figure 5.5: Hamming Code (11,7) redundancy bits calculations

nr0 = r0 ⊕ d0 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6 = 1⊕ 1⊕ 0⊕ 0⊕ 0⊕ 1 = 1

nr1 = r1 ⊕ d0 ⊕ d2 ⊕ d3 ⊕ d5 ⊕ d6 = 0⊕ 1⊕ 1⊕ 0⊕ 0⊕ 1 = 1

nr2 = r2 ⊕ d1 ⊕ d2 ⊕ d3 = 0⊕ 0⊕ 1⊕ 0 = 1

nr3 = r3 ⊕ d4 ⊕ d5 ⊕ d6 = 1⊕ 0⊕ 0⊕ 1 = 0

(5.3)

Figure 5.6 presents an example of the detection and correction of an error. Figure 5.6a depicts
the message sent 0b10011100101 (1253 in decimal). A fault occurs during the transmission in the
bit d3 (Figure 5.6b at position 0111). The received message is 0b10010100101 (1189 in decimal).
During the verification of the redundancy bits. The equation 5.3 shows how the new redundancy
bits are calculated from the received redundancy and data bits. The association of these new
redundancy bits (nr0 − nr3) is call the syndrome. This syndrome represents the position of the
faulted bit and needs to be read backward from nr3 to nr0. As shown in Equation 5.3, the
syndrome equals 0b0111. This is the correct position of the fault that happened in Figure 5.6b.
The same sequence is realised if a fault happens in a redundancy bit. This can be explained as
each data bit is checked by at least two redundancy bits, while a redundancy bit is checked only
by itself during the decoding phase.

5.4.2 Implementation: Minimisation of redundancy bits

In order to implement Hamming Code, we used the same idea as the previous countermeasure:
minimisation of redundancy bits. We used the same five groups as depicted in Table 5.3. As
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1 0 0 1 1 0 11 0 0 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

(a) Initial message

1 0 0 1 0 101 0 0 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001E

(b) Injection of a fault in bit d3

1 0 0 1 0 101 0 0 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

1

(c) Calculation of redundancy bit r0

1 0 0 1 0 101 0 0 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

1

(d) Calculation of redundancy bit r1

1 0 0 1 0 101 0 0 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

1

(e) Calculation of redundancy bit r2

1 0 0 1 0 101 0 0 1

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

0

(f) Calculation of redundancy bit r3

Figure 5.6: Example of a faulted message with Hamming Code (11,7)

Table 5.3: DIFT-related protected registers – Hamming Code

Protected register Number of
bits

Number of
protected bits

Number of
redundancy bits

Group 1 TCR 32 22 5
Group 2 TPR 32 22 5
Group 3 Register File Tag 32 32 6
Group 4 Tag destination address 5 5 4

Group 5
16×1-bit registers
3×2-bit registers
1×4-bit register

26 26 5

Total 127 107 25

we only protect 22 bits of the 32 bits from TCR and TPR registers, we only need 5 bits of
redundancy, instead of 6 bits.

Figure 5.7 presents the proposed implementation for Hamming Code. We do not integrate
control signals for clarity. This implementation is straightforward. In order to protect a register
or multiples independent registers, we choose to send the input(s) directly to both the protected
register(s) (shown in blue) and an encoder. The encoder calculates the different redundancy bits
using combinatorial logic, storing the resulting redundancy bits in a separate register, depicted
in red in the figure. The redundancy bits are stored in this register at the same cycle as the
input(s) value is (are) stored in the protected register(s). Subsequently, the decoder computes
the parity of the protected register and compares it with the redundancy bits stored in the
redundancy bits register. If a difference is detected, it indicates the injection of a fault, which
causes a signal to be sent to indicate the detection. But also, thanks to Hamming Code, we are
able to determine where the fault happened and so the decoder will correct the faulted value
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(dashed arrows). Then this corrected value will be sent to the pipeline, and at the same time,
we correct the faulted register.
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Figure 5.7: Implementation of Hamming Code

In order to protect the set of 32 1-bit registers from the Register File Tag, we rely on a
slightly different approach. Figure 5.8 presents the second approach with six redundancy bits.
We have developed a slightly different approach to minimise the impact on the original design
of the D-RI5CY tag register file. Basically, we use the existing two input ports interfaces instead
of adding a third input port dedicated to correction. We choose to send the input directly to
both the protected register (shown in blue) and an encoder. As in the previous case, the decoder
allows the detection of an error due to a bit-flip fault in one of the registers. With Hamming
Code protection, the decoder produces corrected outputs (dashed arrows) which are propagated
to the tag register outputs. If a fault is detected, the corrected output is forwarded to the tag
register interface. As soon as one of the two input ports is available, this corrected value is
stored in the faulty register to correct the detected fault. A fresh input value has priority on the
corrected value to ensure the data flow correctness.

5.5 Hamming Codes – SECDED

Single Error Correction, Double Error Detection (SECDED) is an error correction technique that
enhances the reliability of data transmission and storage, particularly in high-reliability systems.
It builds upon the foundation of the Hamming Code by enabling the correction of single-bit errors
while also detecting the presence of double-bit errors. This is achieved by adding a global parity
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Figure 5.8: Implementation of Hamming Code – Register File Tag

bit to the standard Hamming Code structure, allowing the system to distinguish between single
and double-bit errors. When a single-bit error is detected, SECDED can automatically correct
it, ensuring that data remains intact. In the case of a double-bit error, SECDED can detect it
but not correct it, thereby signalling the system to flag the error for further intervention.

SECDED is widely used in critical environments, such as Error-Correcting Code memory
systems, where data integrity is paramount, and any data corruption could lead to significant
issues. Its ability to detect and correct errors in real time without requiring significant com-
putational resources makes it particularly effective for applications where both reliability and
efficiency are required. The additional parity bit adds minimal overhead, making SECDED a
practical solution for fault-tolerant systems in sectors like aerospace, telecommunications, and
data centres. By balancing error protection and system performance, SECDED ensures that
systems can continue to function reliably even in the presence of transient errors.

5.5.1 Single Error Correction, Double Errors Detection in a nutshell

d6 d5 d4 d3 d2 d1 d0r3 r2 r1 r0 gp0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

Redundancy bits General Parity

Figure 5.9: Hamming Code – SECDED (12,7) – principle
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The fundamental principle behind SECDED compared to Hamming Codes is the addition
of an extra bit to calculate the general parity gp0 (Figure 5.9). This extra bit works aside of
the redundancy bits and helps calculate the parity of the whole message (redundancy bits and
data bits). This bit helps detects two bits errors while being able to correct single-bit errors.
The parity bit is generally placed at the beginning of the message at index 0. As the most
common Hamming Code is the (7,4), the most common SECDED code is the (8,4) with four
bits of data, three redundancy bits and one parity bit. Equation 5.4 presents the calculation
of the different redundancy and parity bits for a message of seven data bits. Figure 5.10 also
represents the calculation of the general parity bit. This is the same message as for Hamming
Codes (Figure 5.5a), in the previous subsection, so the redundancy bits are already calculated.
Figure 5.10a represents the initial message when all redundancy bits are calculated. If the mes-
sage with the redundancy bits is equal to 0b10011100101, the number of 1s is even, then the
general parity bit will be set to 0, as depicted in Figure 5.10b.

r0 = d0 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6

r1 = d0 ⊕ d2 ⊕ d3 ⊕ d5 ⊕ d6

r2 = d1 ⊕ d2 ⊕ d3

r3 = d4 ⊕ d5 ⊕ d6

gp0 = d0 ⊕ d1 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ r0 ⊕ r1 ⊕ r2 ⊕ r3

(5.4)

1 0 0 1 1 0 11 0 0 1 gp0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

Redundancy bits General Parity

(a) Initial message

1 0 0 1 1 0 11 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

gp0

(b) Calculation of general parity bit gp0

1 0 0 1 1 0 11 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

(c) Final message

Figure 5.10: SECDED (12,7) general parity bit calculation

Figure 5.11 depicts the injection of a single-bit fault. The received message corresponds to the
previous one (0b100111001010). A fault is injected in bit d3 at position 0111 (seventh position).
The decoder calculation of redundancy bits are done at first in Figures 5.11c, 5.11d, 5.11e, and
5.11f and then gives the syndrome 0b0111 for the seventh position which corresponds to the
data bit d3. This syndrome is correct. Now, the general parity bit is decoded from all bits of the
message in Figure 5.11g. This time, the general parity bit is not correct (1 instead of 0). This
new value means that a single fault occurred. Because the syndrome and the general parity bit
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Table 5.4: Summarise of the three case for SECDED

Fault Detection Redundancy Bits General Parity Bit

No fault {r0 − r3} = 0 gp0 = 0
Single Error Correction {r0 − r3} ̸= 0 gp0 = 1
Double Errors Detection {r0 − r3} ̸= 0 gp0 = 0

are different of 0.

1 0 0 1 1 0 11 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

(a) Initial message

1 0 0 1 0 101 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000E

(b) Injection of a fault in bit d3

1 0 0 1 0 101 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

1

(c) Calculation of redundancy bit r0

1 0 0 1 0 101 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

1

(d) Calculation of redundancy bit r1

1 0 0 1 0 101 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

1

(e) Calculation of redundancy bit r2

1 0 0 1 0 101 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

0

(f) Calculation of redundancy bit r3

1 0 0 1 0 101 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

1

(g) Calculation of redundancy bit gp0

Figure 5.11: Example of a 1 bit fault with SECDED (12,7)

Figure 5.12 depicts the injection of a double-bits fault. The received message is still the
same (0b100111001010). A fault is injected in bit d3 at position 0111 (seventh position) and
another fault is injected in bit d0 at position 0011. The decoder calculation of redundancy bits
are done at first in Figures 5.12c, 5.12d, 5.12e, and 5.12f, and gives the syndrome 0b0100 for
the fourth position which corresponds to the redundancy bit r2. This syndrome is incorrect and
without the general parity bit, Hamming Code would correct the fourth bit, which would lead
to the injection of a third fault in the message. But thanks to SECDED, the general parity bit is
decoded from all bits of the message in Figure 5.12g. This time, the general parity bit is correct
(0). This value means that a double fault occurred because the parity did not change while the
redundancy bits changed.

To conclude on SECDED, this code allows correcting single-bit errors and detect double-bit
errors in a message. It is a lightweight countermeasure, as it only adds a few redundancy bits and
one general parity bit. When a fault occurs, there are three different possible cases represented

87



Chapter 5 – Error Detection and Correction codes to protect an In-Core DIFT against FIAs

1 0 0 1 1 0 11 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

(a) Initial message

1 0 0 1 00 01 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000E E

(b) Injection of a fault in bit d3 and bit d0

1 0 0 1 00 01 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

0

(c) Calculation of redundancy bit r0

1 0 0 1 00 01 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

0

(d) Calculation of redundancy bit r1

1 0 0 1 00 01 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

1

(e) Calculation of redundancy bit r2

1 0 0 1 00 01 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

0

(f) Calculation of redundancy bit r3

1 0 0 1 00 01 0 0 1 0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000

0

(g) Calculation of redundancy bit gp0

Figure 5.12: Example of two 1-bit faults with SECDED (12,7)

in Table 5.4. In the first case, the syndrome formed by the redundancy bits is equal to 0 and
the general parity bit syndrome is also equal to 0, in that case, nothing happened, the message
is correct. In the second case, if the syndrome formed by the redundancy bits is different from 0

and the general parity bit is equal to 1, this means that an error has occurred and the syndrome
of the redundancy bits will give its position to allow correction at the correct index. The third
case is represented by a redundancy bits syndrome different from 0 and a general parity bit
equal to 0, in that case, it means that a double bits error occurred. This time the error can not
be corrected. The limitation of this code is achieved when a three bits error occurs.

5.5.2 Implementation: Minimisation of redundancy bits

In order to implement SECDED, we used the same idea as the previous countermeasures: min-
imisation of redundancy bits. We used the same five groups as depicted in Table 5.5. In total,
we have to use 31 bits to protect our mechanism with SECDED against single-bit errors and
double-bit errors.

Figure 5.13 and Figure 5.14 present the proposed implementations for SECDED. We do not
integrate control signals for clarity in these figures. This is approximatively the same figures as
for Hamming Code (Figure 5.7 and Figure 5.8) but with the representation of the extra register
that stores the general parity bit.
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Table 5.5: DIFT-related protected registers – SECDED

Protected register Number of
bits

Number of
protected bits

Number of
redundancy bits

Number of
parity bits

Group 1 TCR 32 22 5 1
Group 2 TPR 32 22 5 1
Group 3 Register File Tag 32 32 6 1
Group 4 Tag destination address 5 5 4 1

Group 5
16×1-bit registers
3×2-bit registers
1×4-bit register

26 26 5 1

Total 127 107 25 5

5.6 Evaluation results

This section presents logical fault injection simulation results considering our two fault models:
single bit-flip in one register at a given clock cycle and single bit-flip in two registers at two
clock cycles. For protected implementations, faults are injected into both DIFT-related and
protection-related registers.

Table 5.6 presents the results of the FPGA implementation using Vivado 2023.2, targeting
the Xilinx Zynq-7000 of the Zedboard development board. It compares different protection
mechanisms in terms of resource utilisation and maximum operating frequency. The table lists
the number of Look-Up Tables (LUTs), the number of Flip-Flops (FFs), and the maximum
achievable frequency for each protection scheme. The D-RI5CY mechanism serves as reference.
The baseline version represents the processor without the DIFT protection, showing a reduction
in both LUTs and FFs usage by 4.54% and 5.31%, respectively, while achieving a 3% improvement
in maximum frequency compared to the D-RI5CY. Simple parity protection slightly increases
LUTs usage by 1.45%, with a negligible impact on FFs and no change in the maximum frequency.
The Hamming Code protection implementation introduces more overhead, with a 5.38% increase
in LUTs and a 1.11% increase in FFs, alongside a minor reduction in maximum frequency by
0.36%. SECDED, finally, introduces the most significant overhead, with an increase of 7.48% in
LUTs, and 1.33% in FFs, and also decreases the maximum frequency by 0.95%. This overhead
is due to the combination of redundancy bits from Hamming Code and the general parity bit.
This comparison highlights the trade-offs between resource utilisation and performance across
different protection mechanisms in FPGA implementations.

Now, we will compare these protections in terms of security. Regarding the "single bit-flip
in one register at a given clock cycle" fault model, Table 5.7 shows the results obtained for the
three considered use cases with and without protections. It is worth noting that we never get
any crashes since we target the DIFT-related registers only. These registers do not impact the
control or instruction flow of the processor. The total number of simulations show the number
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Figure 5.13: Implementation of SECDED

Table 5.6: FPGA implementation results — Vivado 2023.2

Protection Number of LUTs Number of FFs Maximum frequency

Baseline 6,597 (-4.54%) 2,211 (-5.31%) 49.10 MHz (3%)
D-RI5CY 6,911 (0%) 2,335 (0%) 47.60 MHz (0%)

Simple parity 7,011 (1.45%) 2,337 (0.09%) 47.60 MHz (0%)
Hamming Code 7,283 (5.38%) 2,361 (1.11%) 47.40 MHz (-0.36%)

SECDED 7,428 (7.48%) 2,366 (1.33%) 47.20 MHz (-0.95%)

of simulations done in total for each use case and each protection. The results obtained without
protection are from Chapter 3. We obtain 51 successes out of 2286 fault injection simulations
with the D-RI5CY without any protection. Conversely, when employing simple parity protection,
none of the 2376 simulations result in success, as each single-fault in this fault model is detected,
achieving a 100% detection rate. With simple parity, an error signal is generated, which can be
intercepted by a software running in the system to handle the fault, potentially halting the
application if necessary. In contrast, the Hamming Code protection corrects the fault within
the same cycle it occurs, without providing any direct indication to the attacker. The results
from the Hamming Code simulations also show 0 success, but this time 100% of the faults
are corrected. This ensures the application continues running as if no fault occurred. From the
attacker’s perspective, the fault does not affect the system’s behaviour in any way. Results
obtained with SECDED show the same results as with Hamming Code, which is normal as this
fault model inject only one fault per simulation.
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Figure 5.14: Implementation of SECDED – Register File Tag

Table 5.8 presents the results obtained considering the "single bit-flip in two registers at two
clock cycles" fault model. We conducted 2,776,193 simulations to present the results of this new
fault model. For each simulation, we choose two bits in the same register or two registers, and
we choose two different cycles, then, we flip one bit at a first cycle and flip the other one at the
other cycle. Since SECDED does not degrade the error correction performance of the Hamming
Code, the correction and detection capabilities for the fault models under consideration remain
identical to those of the Hamming Code. Therefore, the simulation results for this protection are
not presented, as they would provide no additional insights or distinctions from the Hamming
Code’s performance. Even if the current fault model injects two faults, Hamming Code is enough
because it injects one fault in one cycle and another fault in the next cycle in the worst case.
Hence, as Hamming Code corrects a fault within the same cycle of the fault, the two faults
are twice a single fault from Hamming Code side. However, Table 5.8 shows that without any
protection, 15,866 fault injections among 790,321 simulations (2.01%) lead to a successful attack
in the three use cases, while no successes are reported from simple parity or Hamming Code.
Each fault is corrected thanks to Hamming Code.

5.7 Summary

In this chapter, we presented three countermeasures in order to protect the DIFT mechanism
against FIAs. For that, we considered two fault models: single bit-flip in one register at a given
clock cycle and single bit-flip in two registers at two clock cycles. These fault models are used
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Table 5.7: Logical fault injection simulation campaigns results for single bit-flip in one register
at a given clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Buffer
Overflow

No protection 0 738 12 – – – 12 (1.57%) 762 0:11
Simple parity 0 0 0 792 – – 0 792 0:08

Hamming Code 0 0 0 – 912 – 0 912 0:12
SECDED 0 0 0 – 942 0 0 942 0:03

Format
String

No protection 0 946 41 – – – 29 (2.85%) 1,016 01:52
Simple parity 0 0 0 1,056 – – 0 1,056 01:30

Hamming Code 0 0 0 – 1,216 – 0 1,216 01:50
SECDED 0 0 0 – 1,256 0 0 1,256 01:55

Compare
Compute

No protection 0 491 7 -— – – 10 (1.97%) 508 0:02
Simple parity 0 0 0 528 – – 0 528 0:02

Hamming Code 0 0 0 – 608 – 0 608 0:03
SECDED 0 0 0 – 628 0 0 628 0:03

Total 51 10,224

Table 5.8: Logical fault injection simulation campaigns results for single bit-flip in two registers
at two clock cycles

Crash Silent Delay Detection Detection &
Correction Success Total Execution

time (h:min)

Buffer
Overflow

No protection 0 238,633 1,143 – – 2,159 (0.89%) 241,935 42:12
Simple parity 0 0 0 261,360 – 0 261,360 64:24

Hamming Code 0 0 0 – 346,560 0 346,560 66:48

Format
String

No protection 0 429,260 12,192 – – 10,160 (2.25%) 451,612 544:52
Simple parity 0 0 0 487,872 – 0 487,872 389:20

Hamming Code 0 0 0 – 646,912 0 646,912 1069:36

Compare
Compute

No protection 0 90,432 2,795 — — 3,547 (3.67%) 96,774 12:42
Simple parity 0 0 0 104,544 – 0 104,544 13:36

Hamming Code 0 0 0 – 138,624 0 138,624 20:32

Total 15,866 2,776,193

in real world FIAs. The first countermeasure is based on parity code: simple parity and can
be used to detect any errors. Thanks to this protection, we achieve a 100% fault detection in
our considered fault model, but with the downside of giving an indication to the attacker as we
emit a signal which can be caught by a running software to halt the application. On the other
hand, we implemented a code-based protection: Hamming Code. This protection is limited to
only detection and correction of an error in our case. We propose two implementations. The
first implementation is used to protect a set of registers together. The second implementation
targets the protection of the Register File Tag with constraints such as the number of write
ports available. Thanks to these implementations, we are able to handle 100% of the injected
fault and correct them without any direct indication to the attacker. The third countermeasure
is a Hamming Code with an additional parity bit, this protection is called SECDED for Single
Error Correction, Double Error Detection. This protection has been implemented in the same
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exact way of Hamming Code, with the difference that each formed group comprises an additional
general parity bit. These three countermeasures give effective results against the two fault models
we have considered, while on the other hand, they have a limited impact on system performance
and surface area.

In the next chapter, we will evaluate these protections against more complex fault models
such as multi bit-flip faults and explore different implementation strategies in order to have a
more robust protection against a wider range of attacks and fault models.
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6.1 Introduction

The previous chapter presented two countermeasures against fault injection attacks taking into
account simple fault models, such as single bit-flip inside one register at a given clock cycle.
These countermeasures have been implemented by grouping the different DIFT-related registers
in order to minimise the number of parity and redundancy bits. However, some studies [95, 175]
have shown that is it possible to fault multiple bits precisely.

In this chapter, we present four different implementation strategies of countermeasures to
better protect the D-RI5CY mechanism against more complex fault models. Then, we evaluate
each of these strategies in terms of security against these fault models. Finally, we compare
them in terms of performance and area overhead. We have implemented the minimisation of
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redundancy bits strategy in the last chapter. As shown in Chapter 5, Hamming Code or even
SECDED is better to use than just the simple parity solution for the correction and detection
capacity. Hence, in this chapter, we do not implement other strategies for the simple parity
protection. We present the results obtained from our simulations campaigns on the considered
fault models.

Section 6.2 introduces the different fault models. Section 6.3 introduces four different strate-
gies developed and assessed in this chapter. Some tables are presented in Appendix A.1 due to
their size. Section 6.4 presents the security assessment of these strategies by giving the results
associated to each fault model and use cases, and evaluate them in terms of security, perfor-
mance, and area overhead. Finally, in Section 6.5, we discuss the results obtained from these
strategies and with the strategy of Chapter 5 according to their performance and area overhead
and give the limitations for each strategy.

6.2 Fault models

In Chapter 5, we presented the results of fault injection campaigns targeting a single bit-flip in
one register at a given clock cycle, and a single bit-flip in two registers at two distinct clock cycles.
We demonstrated that lightweight countermeasures, such as simple parity, Hamming Code, or
SECDED version of Hamming Code, are effective in protecting our DIFT mechanism against
single bit-flips occurring in one register at one clock cycle or in two registers at two distinct
clock cycles.

In this chapter, we extend our analysis to consider an attacker capable of injecting faults
into DIFT-related registers, leading to a single bit-flip in two registers at a given clock cycle.
Furthermore, we account for an attacker able to induce multi-bit faults in one register at a given
clock cycle, as well as, multi-bit faults in two registers at a given clock cycle. These fault models,
introduced in Chapter 4, are exhaustively tested across registers ranging from 1-bit to 10-bit.
Registers larger than 10 bits, such as the configuration registers TPR and TCR, are out of
the question due to their size. Even if 22 bits are used for TCR and 17 for TPR, simulating
an exhaustive attack on a single 22-bit register for one cycle would require 222 simulations (i.e:
4,194,304 simulations), and for the combination of two registers (17 bits and 22 bits), the number
of simulations would reach 217 × 222 = 549,755,813,888 which is too large to be simulated in a
reasonable time.

However, it is worth noting that the biggest register after these two 32-bit registers is a 6-bit
register (cf. Table 6.2 and 6.1), so we fault every 1-bit to 6-bit registers. Considering our fault
models, we are able to inject up to 11 faults (the size of the two biggest considered registers)
and state-of-the-art shows successful FIAs up to 4 bits at the same clock cycle using laser fault
injection setup (for example, using ALPhANOV 4-spot laser setup [173]).
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Table 6.1: DIFT-related protected registers – strategy 2

Protected stage Number of
bits

Number of
protected bits

Number of
redundancy bits

Number of
parity bits

Group 1 Instruction Fetch Stage 2 2 3 1
Group 2 Instruction Decode Stage 19 19 5 1
Group 3 Register File Tag 32 32 6 1
Group 4 Execute Stage 1 1 2 1
Group 5 TCR 32 22 5 1
Group 6 TPR 32 22 5 1
Group 7 Load/Store Unit 9 9 4 1

Total 127 107 30 7

The three fault models are exhaustively simulated across all possible values of these regis-
ters. To meet this objective, any DIFT-related register that maintains a tag value, drives tag
propagation or tag update processes, can be targeted. Additionally, registers storing redundancy
bits for protection mechanisms are also considered.

6.3 Implementation strategies

Assessing the robustness of DIFT against more complex fault models requires comprehensive
strategies that can identify vulnerabilities to enhance the system integrity. This section intro-
duces four distinct strategies aimed at evaluating and enhancing the security of DIFT mech-
anisms against complex fault models. Each strategy offers a unique perspective on detecting,
mitigating, or preventing the effects of multi bit-flip faults, contributing to a holistic approach
in fortifying DIFT systems. Strategy 2 introduces a protection by pipeline stage to minimise the
impact on performances because as we protect the registers in the same pipeline stage, we do
not add a lot of combinatorial logic to send the register value to another stage and bring back
to corrected value. By avoiding adding this combinatorial logic, we avoid area overhead and do
not change the critical path that would impact the maximum frequency. Strategy 3 presents a
protection by register to increase the detection capabilities. Strategy 4 presents an amelioration
of the strategy 3 but split the two CSR registers to increase the detection and correction capa-
bilities. Finally, the strategy 5 mixes each bit of a register to another bit of another register to
increase the security by splitting the number of injected faults into different encoder to max-
imise the correction capabilities. By exploring these methodologies, we aim to provide actionable
insights for developing more resilient DIFT solutions thanks to lightweight countermeasures.

6.3.1 Strategy 2: Pipeline Stage Register Coupling for Robust Error Mitiga-
tion

In the second implemented strategy, we rely on protecting each pipeline stage of our processor
individually to minimise the impact on performances. To achieve this implementation, we decided
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Table 6.2: D-RI5CY registers details list for strategy 2

Register Name Module Size Strategy
2

pc_id_o_tag Instruction 1 Gr1
pc_if_o_tag Fetch Stage 1 Gr1

alu_operand_a_ex_o_tag 1 Gr2
alu_operand_b_ex_o_tag 1 Gr2
alu_operand_c_ex_o_tag 1 Gr2

alu_operator_o_mode 2 Gr2
check_d_o_tag 1 Gr2

check_s1_o_tag 1 Gr2
check_s2_o_tag Instruction 1 Gr2

is_store_post_o_tag Decode Stage 1 Gr2
memory_set_o_tag 1 Gr2

regfile_alu_waddr_ex_o_tag 5 Gr2
register_set_o_tag 1 Gr2

store_dest_addr_ex_o_tag 1 Gr2
store_source_ex_o_tag 1 Gr2

use_store_ops_ex_o 1 Gr2
rf_reg[0] 1 Gr3
rf_reg[1] 1 Gr3
rf_reg[2] Register File 1 Gr3

. . . Tag . . . Gr3
rf_reg[30] 1 Gr3
rf_reg[31] 1 Gr3

rs1_o_tag Execute Stage 1 Gr4
tcr_q Control and 32 Gr5
tpr_q Status Registers 32 Gr6

data_type_q_tag 2 Gr7
data_we_q_tag Load/Store 1 Gr7

rdata_offset_q_tag Unit 2 Gr7
rdata_q_tag 4 Gr7

to form seven groups: Instruction Fetch (IF) Stage, Instruction Decode (ID) Stage, Register File
Tag, Execute (EX) Stage, two groups for the two registers TPR and TCR containing the security
policy, and a last group with the Load/Store Unit.

Table 6.2 represents the different DIFT-related registers with their associated group. Ta-
ble 6.1 represents the number of protected bits inside each pipeline stage and their associated
number of redundancy, and parity bits, when SECDED is used. As depicted in Table 6.1, the
number of protected bits differs a lot depending on the pipeline stage, ranging from one bit
to thirty-two bits. Otherwise, the HDL implementations are the same as Chapter 5 with two
proposed implementations (see Figure 5.13 and Figure 5.14). The protection of the TPR and
TCR is limited to 22 bits, as this is the maximum number of bits that can be used for the
TCR. Regardless of the actual usage of the TPR, the same number of bits is protected for both
registers to simplify the implementation and do not change the area overhead. This strategy
protects 107 bits by adding 30 redundancy bits and 7 parity bits, which led to a 29% increase
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Table 6.3: D-RI5CY registers details list for strategy 3

Register Name Module Size Strategy
3

pc_if_o_tag Fetch Stage 1 Gr1
pc_id_o_tag Instruction 1 Gr2

alu_operand_a_ex_o_tag 1 Gr3
alu_operand_b_ex_o_tag 1 Gr4
alu_operand_c_ex_o_tag 1 Gr5

alu_operator_o_mode 2 Gr6
check_d_o_tag 1 Gr7

check_s1_o_tag 1 Gr8
check_s2_o_tag Instruction 1 Gr9

is_store_post_o_tag Decode Stage 1 Gr10
memory_set_o_tag 1 Gr11

regfile_alu_waddr_ex_o_tag 5 Gr12
register_set_o_tag 1 Gr13

store_dest_addr_ex_o_tag 1 Gr14
store_source_ex_o_tag 1 Gr15

use_store_ops_ex_o 1 Gr16
rf_reg[0] 1 Gr17
rf_reg[1] 1 Gr17
rf_reg[2] Register File 1 Gr17

. . . Tag . . . Gr17
rf_reg[30] 1 Gr17
rf_reg[31] 1 Gr17

rs1_o_tag Execute Stage 1 Gr18
tcr_q Control and 32 Gr19
tpr_q Status Registers 32 Gr20

data_type_q_tag 2 Gr21
data_we_q_tag Load/Store 1 Gr22

rdata_offset_q_tag Unit 2 Gr23
rdata_q_tag 4 Gr24

in number of bits stored into registers.

6.3.2 Strategy 3: Individual Register Encapsulation for Robust Error Miti-
gation

In the third implementation strategy, we aim to enhance the protection for every register as-
sociated to the DIFT within our processor, except the registers inside the Register File Tag to
avoid any overhead on the two write ports available. To achieve this, we created 24 groups for
all the registers, ensuring a more targeted and effective protection mechanism. Specifically, two
groups were formed in the IF stage, addressing the initial handling of PC addresses. A signif-
icant portion, fourteen groups, was allocated to the ID stage, as this stage contains processing
and handling of tags information. Additionally, one group was dedicated to the Register File
Tag, as we consider this Register File as one register even if it is composed of 32 registers to
avoid an increase overhead for the Register File. For the EX stage, we formed a single group.
Furthermore, two separated groups were created for the TPR and TCR registers, recognising
their distinct control functions. Finally, four groups were designated for the Load/Store Unit, as
it can be considered as the fourth stage of our processor. This structure allows for a fine granu-
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Table 6.4: D-RI5CY registers details list for strategy 4

Register Name Module Size Strategy
3

pc_if_o_tag Fetch Stage 1 Gr1
pc_id_o_tag Instruction 1 Gr2

alu_operand_a_ex_o_tag 1 Gr3
alu_operand_b_ex_o_tag 1 Gr4
alu_operand_c_ex_o_tag 1 Gr5

alu_operator_o_mode 2 Gr6
check_d_o_tag 1 Gr7

check_s1_o_tag 1 Gr8
check_s2_o_tag Instruction 1 Gr9

is_store_post_o_tag Decode Stage 1 Gr10
memory_set_o_tag 1 Gr11

regfile_alu_waddr_ex_o_tag 5 Gr12
register_set_o_tag 1 Gr13

store_dest_addr_ex_o_tag 1 Gr14
store_source_ex_o_tag 1 Gr15

use_store_ops_ex_o 1 Gr16
rf_reg[0] 1 Gr17
rf_reg[1] 1 Gr17
rf_reg[2] Register File 1 Gr17

. . . Tag . . . Gr17
rf_reg[30] 1 Gr17
rf_reg[31] 1 Gr17

rs1_o_tag Execute Stage 1 Gr18
tpr_q Control and 32 Gr19 – Gr26
tcr_q Status Registers 32 Gr27 – Gr34

data_type_q_tag 2 Gr35
data_we_q_tag Load/Store 1 Gr36

rdata_offset_q_tag Unit 2 Gr37
rdata_q_tag 4 Gr38

larity protection approach, ensuring that each aspect of the processor’s DIFT-related registers
is securely managed. The issue with this strategy is the use of two redundancy bits and one
parity bit to protect one-bit registers.

Table 6.3 represents the group composition with the different DIFT-related registers. Ta-
ble A.1 represents the number of protected bits inside each protected group and their associated
number of redundancy and parity bits, when SECDED is used. As depicted in this table, there
is mainly only one bit protected in the majority of groups (16 groups over 24). This strategy
protects 107 bits by adding 64 redundancy bits and 24 parity bits, which led to a 69% increase
in number of bits stored into registers.

6.3.3 Strategy 4: DIFT-Enhanced CSR Register Splitting for a Strengthened
Security

In the fourth implementation strategy, we keep the protection on each register individually, as in
the implementation strategy 3. However, we improve the protection on the two CSRs registers.
Our idea is to split these two registers by group of operations (arithmetic, branching, etc. – see
Table 3.2 and Table 3.3 for more details). In this way, we aim to enhance the detection of errors
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occurring in the security policy related registers.
Table 6.4 shows the group affectation for each register. As TPR and TCR are split, they take

eight groups each. Table A.2 depicts the number of redundancy and parity bits for each group.
As the different operations of TPR and TCR are on one to four bits, the number of redundancy
bits vary from two to three. This strategy protects 102 bits by adding 101 redundancy bits and
38 parity bits, which led to a 109% increase in number of bits stored into the registers. The
strategy in question protects a smaller number of bits than the previous two, due to the fact
that, upon splitting the two CSR registers, only the utilised portions are protected. As a result,
22 bits are protected for the TCR and 17 for the TPR.

6.3.4 Strategy 5: Sliced Register Bit Coupling for an Improved Data Integrity
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Figure 6.1: Strategy 5 – Mixing registers implementation

In the fifth strategy, we propose a less straightforward idea. Instead of protecting registers
individually or by pipeline stage, we protect them by mixing them. By mixing the registers, an
attacker would require to attack precisely one bit of two different registers or more. Figure 6.1
presents this strategy with four registers: one 4-bit register (i.e R0), one 2-bit register (i.e R1)
and two 1-bit registers (i.e. R2 and R3). Then, we take the larger register, and we decompose
each bit into one Hamming Code or SECDED encoder, and we add one bit of another register
to this encoder. Each of these encoders take maximum as inputs two bits. If possible, we try to
never mix the same registers together. In the following, the encoder and decoder computes in
the same manner as other strategies. This strategy is more complex to implement, as it requires
separating each register into different encoders. In our strategy, we have 39 encoders.

Table 6.5 shows the group affectation for each register. For example, register pc_if_o_tag
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Table 6.5: D-RI5CY registers details list for strategy 5

Register Name Module Size Strategy
3

pc_if_o_tag Fetch Stage 1 Gr1
pc_id_o_tag Instruction 1 Gr1

alu_operand_a_ex_o_tag 1 Gr4
alu_operand_b_ex_o_tag 1 Gr5
alu_operand_c_ex_o_tag 1 Gr6

alu_operator_o_mode 2 Gr2 – Gr3
check_d_o_tag 1 Gr9

check_s1_o_tag 1 Gr7
check_s2_o_tag Instruction 1 Gr8

is_store_post_o_tag Decode Stage 1 Gr10
memory_set_o_tag 1 Gr11

regfile_alu_waddr_ex_o_tag 5 Gr5 – Gr9
register_set_o_tag 1 Gr10

store_dest_addr_ex_o_tag 1 Gr2
store_source_ex_o_tag 1 Gr3

use_store_ops_ex_o 1 Gr4
rf_reg[0] 1 Gr12
rf_reg[1] 1 Gr12
rf_reg[2] Register File 1 Gr12

. . . Tag . . . Gr12
rf_reg[30] 1 Gr12
rf_reg[31] 1 Gr12

rs1_o_tag Execute Stage 1 Gr35
tpr_q Control and 32 Gr13 – Gr26 / Gr28 – Gr30
tcr_q Status Registers 32 Gr13 – Gr34

data_type_q_tag 2 Gr36 – Gr37
data_we_q_tag Load/Store 1 Gr39

rdata_offset_q_tag Unit 2 Gr37 – Gr38
rdata_q_tag 4 Gr35 – Gr36 / Gr38 – Gr39

is in group 1 only because it is a 1-bit register, while regfile_alu_waddr_ex_o_tag is present
in group 5 to group 9 because it is a 5-bit register. For the TPR, we encode only the used bits:
0 to 13 and 15 to 17. Table A.3 presents the number of redundancy and parity bits for each
group. This strategy protects 102 bits by adding 114 redundancy bits and 39 parity bits, which
led to a 120% increase in number of bits stored into registers.

6.4 Experimental results

In this section, we present our experimental results for our five implemented strategies against
the fault models described in Section 6.2, also, we give the FPGA implementation results for
each strategy to compare them taking into account constraints such as area and performance
overhead before evaluating the security induced by these strategies. For each fault model, we
give the associated result with only the D-RI5CY without any protection, with our simple parity
protection, and with the five strategies for Hamming Code and SECDED. Table 6.6 summarises
the tables in the previous subsections, presenting the different strategies. Table 6.7 summarises
the number of registers and the associated number of bits for each strategy. For each strategy,
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Table 6.6: D-RI5CY registers details list

Register Name Module Size Strategy
1

Strategy
2

Strategy
3

Strategy
4

Strategy
5

pc_id_o_tag Instruction 1 Gr5 Gr1 Gr1 Gr1 Gr1
pc_if_o_tag Fetch Stage 1 Gr5 Gr1 Gr2 Gr2 Gr1

alu_operand_a_ex_o_tag 1 Gr5 Gr2 Gr3 Gr3 Gr4
alu_operand_b_ex_o_tag 1 Gr5 Gr2 Gr4 Gr4 Gr5
alu_operand_c_ex_o_tag 1 Gr5 Gr2 Gr5 Gr5 Gr6

alu_operator_o_mode 2 Gr5 Gr2 Gr6 Gr6 Gr2 - Gr3
check_d_o_tag 1 Gr5 Gr2 Gr7 Gr7 Gr9

check_s1_o_tag 1 Gr5 Gr2 Gr8 Gr8 Gr7
check_s2_o_tag Instruction 1 Gr5 Gr2 Gr9 Gr9 Gr8

is_store_post_o_tag Decode Stage 1 Gr5 Gr2 Gr10 Gr10 Gr10
memory_set_o_tag 1 Gr5 Gr2 Gr11 Gr11 Gr11

regfile_alu_waddr_ex_o_tag 5 Gr4 Gr2 Gr12 Gr12 Gr5 - Gr9
register_set_o_tag 1 Gr5 Gr2 Gr13 Gr13 Gr10

store_dest_addr_ex_o_tag 1 Gr5 Gr2 Gr14 Gr14 Gr2
store_source_ex_o_tag 1 Gr5 Gr2 Gr15 Gr15 Gr3

use_store_ops_ex_o 1 Gr5 Gr2 Gr16 Gr16 Gr4
rf_reg[0] 1 Gr3 Gr3 Gr17 Gr17 Gr12
rf_reg[1] 1 Gr3 Gr3 Gr17 Gr17 Gr12
rf_reg[2] Register File 1 Gr3 Gr3 Gr17 Gr17 Gr12

. . . Tag . . . Gr3 Gr3 Gr17 Gr17 Gr12
rf_reg[30] 1 Gr3 Gr3 Gr17 Gr17 Gr12
rf_reg[31] 1 Gr3 Gr3 Gr17 Gr17 Gr12

rs1_o_tag Execute Stage 1 Gr5 Gr4 Gr18 Gr18 Gr35

tcr_q Control and 32 Gr1 Gr5 Gr19 Gr19 - Gr26 Gr13 - Gr26 /
Gr28 - Gr30

tpr_q Status Registers 32 Gr2 Gr6 Gr20 Gr27 - Gr34 Gr13 - Gr34
data_type_q_tag 2 Gr5 Gr7 Gr21 Gr35 Gr36 - Gr37

data_we_q_tag Load/Store 1 Gr5 Gr7 Gr22 Gr36 Gr39
rdata_offset_q_tag Unit 2 Gr5 Gr7 Gr23 Gr37 Gr37 - Gr38

rdata_q_tag 4 Gr5 Gr7 Gr24 Gr38 Gr35 - Gr36 /
Gr38 - Gr39

the values are taken from the SECDED protection, where there is the maximum number of extra
bits. Percentage values are presented in regards with the baseline – D-RI5CY. Between Strategy
2 and Strategy 3 and between Strategy 3 and Strategy 4, there is a 40 % difference due to the
increased number of encoders, as we protect each register individually. The discrepancy between
Strategy 4 and Strategy 5 is relatively minor, amounting to only 11%. This is due to the fact
that the number of groups is increased from 38 to 39, while the total number of bits rises from
266 to 280. This discrepancy can be attributed to the fact that, whereas Strategy 4 safeguards
16 one-bit registers, Strategy 5 only protects six. The remaining groups are allocated to two-bit
or larger registers.

6.4.1 FPGA Implementation Results

This subsection presents the implementation results targeting the Xilinx Zynq 7000 of the Zed-
board development board. Synthesis and implementation are performed using, using Vivado
2023.2. Table 6.8 shows the FPGA implementation results for the D-RISCY, compared with
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Table 6.7: Registers by strategy (SECDED count): summary of number and size

Strategy Number of Registers Number of Bits

Baseline – D-RI5CY 55 127 (0%)

Strategy 1 65 157 (24%)

Strategy 2 69 164 (29%)

Strategy 3 103 215 (69%)

Strategy 4 131 266 (109%)

Strategy 5 133 280 (120%)

various Hamming and SECDED code strategies. The results for the first implementations of
Hamming Code, SECDED, and for the D-RI5CY are from Chapter 5 (Table 5.6). The metrics
assessed include the number of Look-Up Tables (LUTs), the number of Flip-Flops (FFs), and the
maximum operating frequency. The D-RISCY design, without any protection mechanism, utilises
6,911 LUTs and 2,335 FFs, operating at a frequency of 47.40 MHz. In contrast, the application
of Hamming Code protection strategies increases resource utilisation. Hamming Code Strategy
2 exhibits the highest LUT overhead, increasing by 6.63% (7,369 LUTs), while its impact on FFs
remains relatively modest at a 1.21% increase. However, this strategy also results in the most
significant frequency reduction, dropping by 1.43% to 46.90 MHz. Among the Hamming Code
strategies, Strategy 5 offers the least resource overhead (4.27% for LUTs and 3.29% for FFs) but
also experiences a slight frequency reduction of 0.84%. SECDED strategies show a similar trend,
with Strategy 2 consuming the most resources (7.55% more LUTs and 1.33% more FFs than the
D-RISCY). Notably, SECDED Strategy 4 offers an improvement in frequency, increasing the
maximum operating frequency by 1.43% to 48.30 MHz, while maintaining a resource overhead
of 4.98% and 1.29% for LUTs and FFs, respectively. The observed increase in frequency can
be attributed to the utilisation of Vivado and the methodology employed for calculating the
maximum frequency. It is important to note that, as this is not a deterministic method, the
resultant value can be significantly influenced by the presence of a local maximum or minimum.
Consequently, it can be deduced that a relatively substantial error interval is present, with 1.43%
falling within this interval. Overall, SECDED strategies generally offer a better frequency com-
pared to Hamming strategies, particularly Strategy 4, which demonstrates an optimal balance
between resource overhead and performance improvement. These results highlight the trade-offs
between error protection mechanisms and FPGA resource consumption, with Hamming Codes
leading to greater resource usage and frequency reduction, while SECDED solutions, particu-
larly Strategy 4, offer better frequency with moderate resource impact. In conclusion, given that
the discrepancy remains within the 1-2% range, it can be stated that the implementation of the
aforementioned protections does not result in any discernible impact on performance, as this
range represents the margin of error associated with the Vivado synthesis and implementation
process.
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Table 6.8: FPGA implementation results — Vivado 2023.2

Protection Number of LUTs Number of FFs Maximum frequency

D-RI5CY 6911 (0%) 2335 (0%) 47.60 MHz (0%)

Hamming Code Strategy 1 7283 (5.38%) 2361 (1.11%) 47.40 MHz (-0.36%)

Hamming Code Strategy 2 7369 (6.63%) 2363 (1.2%) 46.90 MHz (-1.43%)

Hamming Code Strategy 3 7251 (4.92%) 2361 (1.11%) 46.80 MHz (-1.67%)

Hamming Code Strategy 4 7203 (4.23%) 2371 (1.54%) 47.60 MHz (0%)

Hamming Code Strategy 5 7182 (3.92%) 2411 (3.25%) 47.30 MHz (-0.57%)

SECDED Strategy 1 7428 (7.48%) 2366 (1.33%) 47.20 MHz (-0.95%)

SECDED Strategy 2 7433 (7.55%) 2366 (1.41%) 47.20 MHz (-0.95%)

SECDED Strategy 3 7324 (5.98%) 2368 (1.28%) 47.50 MHz (-0.24%)

SECDED Strategy 4 7255 (4.98%) 2365 (1.93%) 48.30 MHz (1.43%)

SECDED Strategy 5 7228 (4.59%) 2428 (3.98%) 48.30 MHz (1.43%)

Comparing the results from Table 6.7 and Table 6.8, the data may seem inconsistent. Al-
though strategies 4 and 5 lead to the greatest increase in the number of bits stored in the
registers, they result in the smallest increase in surface area. This is because, in strategies 4 and
5, there are numerous groups, though most of these groups only protect 1 or 2 bits. As a result,
the majority of encoders are lightweight, and the single parity registers are only one bit long.
During synthesis and implementation, optimisation likely occurs, to minimise the area overhead.

6.4.2 Fault Models Evaluation

In this subsection, we present our fault injection campaigns results targeting the DIFT-related
registers of the D-RI5CY and its associated protection registers. We present one table for each
considered fault model containing the results for all the three use cases and all strategies (no
protection, simple parity, Hamming Code 1 – 5, and SECDED 1 – 5).

Table 6.9 shows the results obtained from the single bit-flip in two registers at a given clock
cycle fault model according to each use case. This table shows that without any protection
in the case of the buffer overflow, the D-RI5CY lead to 1406 successes with this fault model,
while with the simple parity, we decrease from 1406 to 239 successes. However, due to the
increased number of registers and the fact that Hamming Code can detect only one error, as
we inject two faults, Hamming Code try to correct a fault but in many cases, it can cause a
third fault increasing the number of successes. Nevertheless, the different proposed strategies
decrease this number of successes by a factor of approximatively 50, going from 2.93% to 0.06%.
The SECDED protection detect all injected faults, thus no success happens thanks to this
countermeasure. For this fault model, we conducted 4,252,212 simulations for a total of 11,823
successes (0.28%). The simulation time for this fault model is approximately 4113 hours and 37
minutes equivalent, which equates to 3.48 seconds per simulation. Table 6.10 shows the results
obtained from the multi-bit faults in one register at a given clock cycle fault model. This table
depicts that Hamming Code induces more or less the same amount of faults than without any
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Figure 6.2: Distribution of successes in the case of buffer overflow, unprotected, with a single
bit-flip in two registers at a given clock cycle fault model (1406 successes).

protection, while simple parity shows better performances in terms of security. However, we can
note a slight decrease for the second and third use cases. The best protection with Hamming
Code is the fifth strategy, as it shows the lower amount of successes. On the other hand, SECDED
offers the best results in terms of protection, although it is not always successful against attacks
depending on the strategy considered. For example, for the second use case, all five strategies
led to some successes, whereas for the third use case, only the first strategy led to successes. As
we are injecting multiple faults, up to 6 bit-flips, with this fault model, it is normal that there
will still be some successes. For this fault model, we conducted 82,872 simulations for a total
of 336 successes (0.41%). The simulation time for this fault model is approximately 58 hours
and 2 minutes equivalent, which equates to 2.52 seconds per simulation. Table 6.11 shows the
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Figure 6.3: Distribution of successes in the case of buffer overflow, with the strategy 5 of Ham-
ming Code, with a single bit-flip in two registers at a given clock cycle fault model (98 successes).

results obtained from the multi-bit faults in two registers at a given clock cycle fault model.
This table represents the more complex considered fault model, for each use case and for each
strategy there will be some successes. It is due to that fact that we can inject up to 11 faults
in two registers, even though SECDED can detect up to two faults. Hamming Code increases
the number of successes, depending on the strategy and the use case. However, if we just take
into account the percentage, the different strategies allow decreasing with a significant factor
the number of successes. For example, for the buffer overflow, the highest ratio of successes is
due to the second strategy of Hamming Code at 1.33% and the lowest ratio is thanks to the
fifth strategy of SECDED at 0.0067% (round to 0.01 in the table), which is approximatively
200 times less than 1.33%. For this fault model, we conducted 16,812,216 simulations for a total

107



Chapter 6 – Implementation strategies: evaluation and results

al
u_

op
er

an
d_

a_
ex

_o
_t

ag
al

u_
op

er
an

d_
b_

ex
_o

_t
ag

al
u_

op
er

an
d_

c_
ex

_o
_t

ag
al

u_
op

er
at

or
_o

_m
od

e
ch

ec
k_

d_
o_

ta
g

ch
ec

k_
s1

_o
_t

ag
ch

ec
k_

s2
_o

_t
ag

da
ta

_t
yp

e_
q_

ta
g

da
ta

_w
e_

q_
ta

g
hc

_id
_s

ta
ge

/h
c_

o
hc

_o
_r

f_
ta

g
hc

_p
c_

if_
id

_o
_t

ag
/h

c_
o

hc
_r

s1
_o

_t
ag

/h
c_

o
hc

_t
cr

/h
c_

o
hc

_t
pr

/h
c_

o
is_

st
or

e_
po

st
_o

_t
ag

m
em

or
y_

se
t_

o_
ta

g
pc

_id
_o

_t
ag

pc
_if

_o
_t

ag
rd

at
a_

of
fs

et
_q

_t
ag

rd
at

a_
q_

ta
g

re
gf

ile
_a

lu
_w

ad
dr

_e
x_

o_
ta

g
re

gi
st

er
_s

et
_o

_t
ag

rf_
re

g[
0]

rf_
re

g[
10

]
rf_

re
g[

11
]

rf_
re

g[
12

]
rf_

re
g[

13
]

rf_
re

g[
14

]
rf_

re
g[

15
]

rf_
re

g[
16

]
rf_

re
g[

17
]

rf_
re

g[
18

]
rf_

re
g[

19
]

rf_
re

g[
1]

rf_
re

g[
20

]
rf_

re
g[

21
]

rf_
re

g[
22

]
rf_

re
g[

23
]

rf_
re

g[
24

]
rf_

re
g[

25
]

rf_
re

g[
26

]
rf_

re
g[

27
]

rf_
re

g[
28

]
rf_

re
g[

29
]

rf_
re

g[
2]

rf_
re

g[
30

]
rf_

re
g[

31
]

rf_
re

g[
3]

rf_
re

g[
4]

rf_
re

g[
5]

rf_
re

g[
6]

rf_
re

g[
7]

rf_
re

g[
8]

rf_
re

g[
9]

rs
1_

o_
ta

g
st

or
e_

de
st

_a
dd

r_
ex

_o
_t

ag
st

or
e_

so
ur

ce
_e

x_
o_

ta
g

us
e_

st
or

e_
op

s_
ex

_o

alu_operand_c_ex_o_tag
check_s2_o_tag

data_type_q_tag
data_we_q_tag

hc_id_stage/hc_o
hc_lsu_reg/hc_o

hc_o_rf_tag
hc_pc_if_id_o_tag/hc_o

hc_rs1_o_tag/hc_o
hc_tcr/hc_o
hc_tpr/hc_o

memory_set_o_tag
pc_if_o_tag

rdata_offset_q_tag
rdata_q_tag

regfile_alu_waddr_ex_o_tag
register_set_o_tag

rf_reg[0]
rf_reg[10]
rf_reg[11]
rf_reg[12]
rf_reg[13]
rf_reg[14]
rf_reg[15]
rf_reg[16]
rf_reg[17]
rf_reg[18]
rf_reg[19]

rf_reg[1]
rf_reg[20]
rf_reg[21]
rf_reg[22]
rf_reg[23]
rf_reg[24]
rf_reg[25]
rf_reg[26]
rf_reg[27]
rf_reg[28]
rf_reg[29]

rf_reg[2]
rf_reg[30]
rf_reg[31]

rf_reg[3]
rf_reg[4]
rf_reg[5]
rf_reg[6]
rf_reg[7]
rf_reg[8]
rf_reg[9]

rs1_o_tag
store_dest_addr_ex_o_tag

store_source_ex_o_tag
use_store_ops_ex_o

1

1

8

4

1 2 2 4 2 2 2 4 2 35 2 31 2 2 4 16 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2

16 16 16 80 64 32

2 2 2 4 2 2 2 4 2 92 70 2 2 2 2 4 16 158 2 1 2 2 2 2 2 2 2 2 2 2 64 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 4 2 2 2 4 2 2 2 3 9 4 16 44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 3 4 8

10 10 10 20 10 10 10 20 10 180 339 66 18 272 10 10 10 10 20 80 218 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 5 10 10 10 10

8 8 8 16 8 8 8 16 8 152 282 53 14 8 8 8 8 16 64 184 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1 1 3 1 1 1 1

2

8

32

2 2 2 4 4 4 4 4 32 4 4

1 1 4

4

4 1 1

4 1

4 1

4 1

4 1 1

4 1

4 1 1

4 1 1

4 1

4 1

4 1

4 1

4 1

4 1 1

4 1 1

4 1 1

4 1 1

4 1

4 1

4 1

4 1 1

4 1

4 1

4 1 1

4 1

4 1

4 1

4 1

4 1 1

4 1

4 1 1

4

1 2

1 2 1

1 1 2

0

50

100

150

200

250

300

Nu
m

be
r o

f s
uc

ce
ss

Figure 6.4: Distribution of successes in the case of buffer overflow, with the 2nd strategy of
Hamming Code, with multi-bit faults in two registers at a given clock cycle fault model (4356
successes).

of 118,409 successes (0.70%). The simulation time for this fault model is approximately 15,471
hours and 13 minutes equivalent, which equates to 3.31 seconds per simulation.

Figure 6.2 and Figure 6.3 present the distribution of successes (coloured boxes) according
to the buffer overflow use case and taking into account the single bit-flip in two registers at a
given clock cycle fault model. Figure 6.2 depicts the distribution of the 1406 successes, it shows
2 lines and 3 columns with many coloured boxes. These boxes show where are the most critical
registers to be protected for this fault model. By comparing the two figures, we can see a major
decrease of coloured boxes, showing that the protection is effective. The highest number without
protection is 272 at the intersection of tcr_q and tpr_q, while when applying the protection
this number decrease to 10 at the intersection of hc_csr_group21/hc_o and tcr_q. The hc_
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Figure 6.5: Distribution of successes in the case of buffer overflow, with the strategy 5 of
SECDED, with multi-bit faults in two registers at a given clock cycle fault model (66 successes).

csr_group21/hc_o register protects the 21st bit of the tcr_q which stores the Execute Check
bit of the security policy (see Chapter 3 for more details). Figure 6.4 and Figure 6.5 present the
distribution of successes (coloured boxes) according to the buffer overflow use case and taking
into account the multi-bit faults in two registers at a given clock cycle fault model. Figure 6.4
shows 5 lines and 2 columns representing different critical registers. The highest number is set
at 339 successes. This line represents the redundancy bits to protect the tcr_q which explains
the high number of successes due to this register. Once the optimal protection has been applied,
the number of successes decreases to 66 with a single line. This is due to the fact that the
redundancy bits of the register file are the only register that has not been protected in the same
manner as the others. This is a result of the constraints that have been placed on the number
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of register file write ports. The objective has been to maintain the two write ports in order to
avoid an increase in the area overhead and a subsequent decrease in performance.

Table 6.9: Logical fault injection simulation campaigns results for single bit-flip in two registers
at a given clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Buffer
Overflow

No protection 0 45,097 1503 – – – 1406 (2.93%) 48,006 13:43
Simple parity 0 10,551 134 40,952 – – 239 (0.46%) 51,876 14:07
Hamming 1 0 0 575 – 67,829 – 452 (0.66%) 68,856 19:48
Hamming 2 0 0 297 – 72,867 – 312 (0.42%) 73,476 97:16
Hamming 3 0 0 263 – 108,326 – 281 (0.26%) 108,870 30:00
Hamming 4 0 0 57 – 155,112 – 99 (0.06%) 155,268 46:30
Hamming 5 0 0 55 – 173,367 – 98 (0.06%) 173,520 53:00
SECDED 1 0 2436 0 – 59,424 11,616 0 73,476 20:56
SECDED 2 0 0 0 – 69,354 10,842 0 80,196 21:49
SECDED 3 0 0 0 – 128,376 9654 0 138,030 40:14
SECDED 4 0 0 0 – 204,060 7410 0 211,470 64:02
SECDED 5 0 12,096 0 – 214,722 7542 0 234,360 69:44

Format
String

No protection 0 55,589 5035 – – – 3384 (5.29%) 64,008 163:09
Simple parity 0 13,361 450 54,590 – – 767 (1.11%) 69,168 114:06
Hamming 1 0 0 1709 – 89,010 – 1089 (1.19%) 91,808 179:38
Hamming 2 0 0 982 – 96,182 – 804 (0.82%) 97,968 136:40
Hamming 3 0 0 659 – 143,883 – 618 (0.43%) 145,160 261:40
Hamming 4 0 0 379 – 206,423 – 222 (0.11%) 207,024 368:10
Hamming 5 0 0 391 – 230,758 – 211 (0.09%) 231,360 445:58
SECDED 1 0 0 0 – 82,480 15,488 0 97,968 233:28
SECDED 2 0 0 0 – 92,472 14,456 0 106,928 185:35
SECDED 3 0 0 0 – 171,168 12,872 0 184,040 317:20
SECDED 4 0 0 0 – 272,080 9880 0 281,960 462:58
SECDED 5 0 16,128 0 – 286,296 10,056 0 312,480 558:16

Compare
Compute

No protection 0 29,906 919 – – – 1179 (3.68%) 32,004 05:24
Simple parity 0 6697 202 27,678 – – 7 (0.02%) 34,584 04:48
Hamming 1 0 0 450 – 45,192 – 262 (0.57%) 45,904 09:21
Hamming 2 0 0 440 – 48,419 – 125 (0.26%) 48,984 08:47
Hamming 3 0 0 315 – 72,140 – 125 (0.17%) 72,580 13:53
Hamming 4 0 0 97 – 103,345 – 70 (0.07%) 103,512 22:23
Hamming 5 0 0 96 – 115,511 – 73 (0.06%) 115,680 23:48
SECDED 1 0 0 0 – 37,740 11,244 0 48,984 17:00
SECDED 2 0 0 0 – 46,236 7228 0 53,464 10:12
SECDED 3 0 0 0 – 85,584 6436 0 92,020 18:25
SECDED 4 0 0 0 – 136,040 4940 0 140,980 28:37
SECDED 5 0 0 0 – 151,212 5028 0 156,240 32:52

Total 11,823 (0.28) 4,252,212

6.5 Discussion

In this section, we discuss the results obtained considering the fault models of this chapter and
the use cases.

Against our three fault models and taking into account the three use cases, single bit-flip in
two registers at a given clock cycle, multi-bit faults in one register at a given clock cycle, multi-bit
faults in two registers at a given clock cycle, the D-RI5CY shows a lot of vulnerabilities against
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Table 6.10: Logical fault injection simulation campaigns results for exhaustive multi-bits faults
in one register at a given clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Buffer
Overflow

No protection 0 927 6 – – – 3 (0.32%) 936 00:08
Simple parity 0 498 0 498 – – 0 996 00:14
Hamming 1 0 0 20 – 1962 – 10 (0.50%) 1992 00:28
Hamming 2 0 0 12 – 2038 – 14 (0.68%) 2064 00:32
Hamming 3 0 0 12 – 2352 – 12 (0.51%) 2376 00:28
Hamming 4 0 0 12 – 2712 – 12 (0.44%) 2736 00:35
Hamming 5 0 0 12 – 2976 – 12 (0.40%) 3000 00:45
SECDED 1 0 0 8 – 1393 648 3 (0.15%) 2052 00:30
SECDED 2 0 0 5 – 1475 666 2 (0.09%) 2148 00:30
SECDED 3 0 0 4 – 1932 726 2 (0.08%) 2664 00:40
SECDED 4 0 0 0 – 2370 822 0 3192 00:45
SECDED 5 0 0 0 – 2670 798 0 3468 00:55

Format
String

No protection 0 1202 32 – – – 14 (1.12%) 1248 01:24
Simple parity 0 661 0 665 – – 2 (0.15%) 1328 02:12
Hamming 1 0 0 62 – 2565 – 29 (1.09%) 2656 04:24
Hamming 2 0 0 53 – 2666 – 33 (1.20%) 2752 03:36
Hamming 3 0 0 47 – 3090 – 31 (0.98%) 3168 03:55
Hamming 4 0 0 47 – 3570 – 31 (0.85%) 3648 04:25
Hamming 5 0 0 41 – 3930 – 29 (0.73%) 4000 05:18
SECDED 1 0 0 22 – 1832 864 18 (0.66%) 2736 03:30
SECDED 2 0 0 14 – 1938 894 18 (0.63%) 2864 03:48
SECDED 3 0 0 10 – 2560 968 14 (0.39%) 3552 04:42
SECDED 4 0 0 5 – 3146 1096 9 (0.21%) 4256 05:42
SECDED 5 0 0 4 – 3554 1064 2 (0.04%) 4624 06:30

Compare
Compute

No protection 0 616 2 – – – 6 (0.96%) 624 00:04
Simple parity 0 330 0 334 – – 0 664 00:04
Hamming 1 0 0 9 – 1311 – 8 (0.60%) 1328 00:09
Hamming 2 0 0 15 – 1356 – 5 (0.36%) 1376 00:09
Hamming 3 0 0 12 – 1567 – 5 (0.32%) 1584 00:11
Hamming 4 0 0 12 – 1807 – 5 (0.27%) 1824 00:13
Hamming 5 0 0 12 – 1983 – 5 (0.25%) 2000 00:14
SECDED 1 0 0 2 – 888 476 2 (0.15%) 1368 00:09
SECDED 2 0 0 6 – 977 449 0 1432 00:10
SECDED 3 0 0 2 – 1290 484 0 1776 00:12
SECDED 4 0 0 0 – 1580 548 0 2128 00:15
SECDED 5 0 0 0 – 1780 532 0 2312 00:16

Total 336 (0.41) 82,872

111



Chapter 6 – Implementation strategies: evaluation and results

Table 6.11: Logical fault injection simulation campaigns results for exhaustive multi-bits faults
in two registers at a given clock cycle

Crash Silent Delay Detection Detection &
Correction

Double Error
Detection Success Total Execution

time (h:min)

Buffer
Overflow

No protection 0 67,072 926 – – – 450 (0.66%) 68,448 11:11
Simple parity 0 24,622 8 53,359 – – 59 (0.08%) 78,048 25:00
Hamming 1 0 294,464 6273 – – – 3103 (1.02%) 303,840 99:36
Hamming 2 0 0 3992 – 319,588 – 4356 (1.33%) 327,936 131:12
Hamming 3 0 0 4557 – 436,187 – 4408 (0.99%) 445,152 121:20
Hamming 4 0 0 5446 – 590,953 – 5329 (0.89%) 601,728 167:00
Hamming 5 0 0 5987 – 714,873 – 5860 (0.81%) 726,720 210:31
SECDED 1 0 0 1911 – 150,791 170,575 723 (0.22%) 324,000 86:59
SECDED 2 0 0 1186 – 170,805 184,761 584 (0.16%) 357,336 94:04
SECDED 3 0 0 1230 – 300,260 263,665 669 (0.12%) 565,824 161:30
SECDED 4 0 0 18 – 457,498 368,959 61 (0.01%) 826,536 244:48
SECDED 5 0 0 39 – 576,992 401,407 66 (0.01%) 978,504 284:45

Format
String

No protection 0 84,419 4836 – – – 2009 (2.20%) 91,264 104:15
Simple parity 0 32,275 147 71,198 – – 444 (0.43%) 104,064 138:40
Hamming 1 0 0 20,050 – 375,836 – 9234 (2.28%) 405,120 902:08
Hamming 2 0 0 17,597 – 408,894 – 10,757 (2.46%) 437,248 774:40
Hamming 3 0 0 17,926 – 564,154 – 11,456 (1.93%) 593,536 1021:50
Hamming 4 0 0 20,986 – 767,604 – 13,714 (1.71%) 802,304 1418:24
Hamming 5 0 0 20,547 – 934,077 – 14,336 (1.48%) 968,960 1690:05
SECDED 1 0 0 5408 – 194,766 227,655 4171 (0.97%) 432,000 740:21
SECDED 2 0 0 3611 – 220,568 247,704 4565 (0.96%) 476,448 836:41
SECDED 3 0 0 3088 – 395,487 351,553 4304 (0.57%) 754,432 1305:36
SECDED 4 0 0 1939 – 604,649 491,945 3515 (0.32%) 1,102,048 1915:20
SECDED 5 0 0 1938 – 766,527 535,209 998 (0.08%) 1,304,672 2287:38

Compare
Compute

No protection 0 44,444 323 – – – 865 (1.90%) 45,632 05:36
Simple parity 0 16,033 53 35,943 – – 3 (0.01%) 52,032 08:05
Hamming 1 0 0 2912 – 196,958 – 2690 (1.33%) 202,560 34:17
Hamming 2 0 0 4677 – 211,969 – 1978 (0.90%) 218,624 37:24
Hamming 3 0 0 4377 – 290,302 – 2089 (0.70%) 296,768 53:50
Hamming 4 0 0 5282 – 393,423 – 2447 (0.61%) 401,152 74:31
Hamming 5 0 0 5829 – 475,987 – 2664 (0.55%) 484,480 94:21
SECDED 1 0 0 656 – 92,123 122,731 490 (0.23%) 216,000 35:42
SECDED 2 0 0 1452 – 112,110 124,659 3 (0%) 238,224 43:38
SECDED 3 0 0 640 – 200,702 175,871 3 (0%) 377,216 72:32
SECDED 4 0 0 68 – 304,920 246,033 3 (0%) 551,024 109:22
SECDED 5 0 0 96 – 384,572 267,665 3 (0%) 652,336 128:21

Total 118,409 (0.7%) 16,812,216
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fault injections. Our first protection, the simple parity, helps to reduce the number of successes
by only detecting the fault. On the other hand, Hamming Code has mixed results depending on
the fault model and the strategy. In fact, given that it can correct one fault, and that at least
two are inserted, it will attempt to correct, but will often introduce a third fault, which leads
to an increase in the number of successes. The implemented strategies reduce the probability of
correcting a faulty bit when multiple faults are introduced into a single register. This is achieved
by splitting the register across multiple encoders, which enables the detection and correction
of faults as if they were single-bit faults. We can assume that the finer the granularity, the
greater the protection. However, this raises the question of the area overhead of this protection.
It has been demonstrated that the proposed protections are effective in protecting the two CSR
registers, TPR and TCR. However, it is noteworthy that some successes still occur. It would be
prudent to consider implementing a more robust protection mechanism for these registers, such
as an ECC, to detect and correct multi-bit errors.

Now we can discuss and compare these implementations in terms of area and performance
overhead. The D-RI5CY, only, uses 6911 LUTs, and 2335 FFs at a frequency of 47.60 MHz.
However, if we consider the fifth strategy with SECDED which gives the best security results
on all fault models only adds 4.59% overhead on LUTs (7228) and 3.98% on FFs (2428). The
frequency measure indicates an increase to 48.30 MHz, which needs to be taken with precaution.
Nevertheless, if we consider an embedded system with constraints such as performance and area
and make the best security compromise, it turns out that strategy 4 or 5 are the best. Although
a 5% increase in area may seem high, it’s important to remember that we are working on a very
small processor that contains only 6597 LUTs and 2211 FFs.

6.6 Summary

This chapter has presented four different implementation strategies of countermeasures to bet-
ter protect the D-RI5CY mechanism against these fault models. We evaluated each of them in
terms of security against more complex fault models considering multi bit-flips faults in one
or two registers in one clock cycle and single bit-flip in two registers at one clock cycle. The
obtained results show good performance in terms of security, area, and performance overhead.
Thus, our strategies allow protecting efficiently our DIFT against fault injection attacks using
lightweight countermeasures. However, as we test exhaustively all possible cases, there are still
some successes due to some combination when targeting specific registers. For these cases, an-
other protection, such as a more robust ECC like BCH or LDPC code, would be interesting
to evaluate. In their paper, Mahadevaswamy et al. [176] present a new implementation of the
ALU for BCH Code. They demonstrate that BCH Code for a fault-tolerant method results in an
overhead increase of between 70% and 75%. However, it is challenging to identify a paper that
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provides comprehensive system-level results of area and performances overhead with a robust
comparison between the baseline and a BCH implementation.
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Chapter 7

CONCLUSION

The only truly secure system is one that is powered off, cast in a block of concrete
and sealed in a lead-lined room with armed guards - and even then I have my
doubts.

Gene Spafford
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7.1 Synthesis

With the rapid expansion of IoT and the growing ubiquity of embedded systems, ensuring ro-
bust security has become a critical priority for both hardware designers and software developers.
Protecting these systems from potential threats, especially physical attacks, remains a key chal-
lenge. Among these threats, Fault Injection Attacks stand out as a significant risk due to their
capacity to disrupt device operation and compromise data integrity.

Fault injection attacks are particularly dangerous because they allow attackers to inject
faults into a system during runtime, potentially bypassing even the most robust software se-
curity mechanisms. By manipulating voltage, clock signals, or using techniques like laser-based
injections, adversaries can induce unexpected behaviour, leading to data leakage, corruption,
or system hijacking. These attacks are becoming more accessible due to the decreasing cost
of fault injection tools, making it imperative to design systems with built-in resilience. Exist-
ing security mechanisms, like Dynamic Information Flow Tracking, which is used as a security
against software threats, are not immune to these attacks, necessitating deeper investigation and
the development of tailored countermeasures. Without effective defences, FIAs remain a potent
threat, capable of undermining the reliability and trustworthiness of critical IoT systems.

This thesis aims to address these challenges by assessing vulnerabilities and proposing
lightweight countermeasures to strengthen digital systems against FIAs. By evaluating and im-
proving the security of Dynamic Information Flow Tracking mechanisms, we propose a solution
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on how to protect systems against sophisticated physical and software-based threats. In this
concluding chapter, we summarise the contributions made, reflect on the findings, and discuss
the potential for further advancements in securing embedded systems against physical attacks.

In the second chapter, we systematically introduced the three main parts of this research.
First, we provided a comprehensive explanation of hardware-based DIFT and conducted a de-
tailed review of the state-of-the-art of Information Flow Tracking methodologies, spanning soft-
ware implementations, hardware solutions, and co-design approaches that integrate both. Sec-
ond, we categorised various forms of physical attacks, with a particular emphasis on an in-depth
analysis of FIAs and their diverse mechanisms for compromising system security. Finally, we pre-
sented a critical overview of the existing countermeasures designed to effectively protect systems
against FIAs, laying the foundations for the subsequent development of enhanced lightweight
protection strategies.

In the third chapter, we presented the processor utilised in this work, detailing its implemen-
tation of in-core hardware-based DIFT and demonstrating its use in its default configuration.
In the second part, we described three specific use cases developed to analyse the behaviour
of the DIFT mechanism, and we conducted a theoretical assessment of its resilience against
FIAs, considering classical single fault models such as bit set, bit reset, and single bit-flip. Fi-
nally, we evaluated the DIFT’s vulnerabilities through simulation campaigns to validate our
theoretical results. Our findings revealed that the DIFT mechanism is predominantly vulnerable
to single bit-flip faults due to its 1-bit data path. The fault injection simulations corroborated
these results, highlighting critical registers that varied depending on the specific use case under
consideration.

In the fourth chapter, we introduced FISSA (Fault Injection Simulation for Security As-
sessment), a novel open-source tool developed to support Security by Design. FISSA enables
designers to assess the security of their systems during the conceptual phase of development.
Seamlessly integrated with well-known HDL tools and simulators, such as Questasim, FISSA
accepts a set of parameters and generates corresponding TCL scripts, which are executed within
the HDL simulator. Each simulation produces detailed JSON log files, providing a comprehen-
sive basis for security analysis. The tool is highly configurable, allowing designers to tailor it to
meet specific design requirements, offering flexibility in the evaluation process.

In the fifth chapter, we proposed and implemented three lightweight countermeasures to
enhance the security of the D-RI5CY mechanism. The first countermeasure involves the use of
simple parity as a fault detector. Upon detecting a fault, the parity bit triggers a signal to alert
the system. The second countermeasure employs Hamming Code as a single fault corrector,
capable of detecting and correcting single-bit errors with a 100% accuracy at cycle accurate.
This technique effectively corrected all single bit-flips induced by the fault models evaluated in
Chapter 3. However, with the advent of more sophisticated fault injection platforms capable of
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inducing multiple faults, single bit-flips are no longer the predominant threat. This led to the
introduction of more complex fault models, such as single bit-flip in two registers at two distinct
clock cycles. To address this, we implemented the third countermeasure, SECDED (Single Error
Correction, Double Error Detection), which extends the Hamming Code by adding another bit
for parity to enable the detection of double-bit errors. These three countermeasures demonstrated
strong effectiveness against the fault models considered, while maintaining minimal impact on
system performance and area overhead.

In the sixth chapter, we took into account even more complex fault models, such as single bit-
flip in two registers at one clock cycle, multi-bit faults in one register at a given clock cycle, and
multi-bit faults in two registers at a given clock cycle. These fault models access the limit of our
three countermeasures. As we can inject two to twelve faults at the same time, the possibilities
of detection and correction are not enough. To achieve a better protection by staying with our
three lightweight countermeasures, we decided to evaluate different group composition on our
encoders. This evaluation allowed to assess the security performances of each strategy and take
into account the performance and area overhead induced by each strategy to better compare
them for a small embedded system. Thanks to these strategies, we have shown better security
performances by doing some compromises on the size. However, with an increase of 5% of our
processor size, we are able to detect and correct the vast majority of previous successful attacks.
For the remaining successes, a better protection would need to be evaluated, such as a better
ECC (BCH code, for example).

Finally, to conclude this part, all the experiments were carried out on a server with the
following configuration Xeon Gold 5220 (2.2 GHz, 18C/36T), 128 GB RAM, Ubuntu 20.04.6
LTS and Questasim 10.6e. We ran 23,935,697 simulations for all our fault models, and each
simulation took an average of 3.29 seconds to run on our server. To give an overview of the
time needed to simulate the fifth implementation of SECDED with the multi-bit faults in two
registers at a given clock cycle fault model, it can be calculated that there are 9,940,608,797,400
simulations to be carried out, and at 3.29 seconds per simulation it would take around 1,037,056
years on one server.

7.2 Perspectives

In terms of perspectives, this work has reached its primary objective: to propose a protected
DIFT mechanism against fault injection attacks. However, many possibilities still exist to pursue
this research. A non-exhaustive list of perspectives is thus provided hereunder.

In this work, we focused on a specific implementation of DIFT that utilises 1-bit tags. How-
ever, other implementations, such as the one discussed in [50], feature multi-bit tags, and there
exist more complex CPUs with advanced features such as deeper pipelines, prefetching, specula-
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tion, and out-of-order execution. The vulnerabilities of DIFT mechanisms may vary depending
on these architectural differences. A comprehensive evaluation of different DIFT implementa-
tions is needed to gain a broader understanding of their vulnerabilities and to propose effective
countermeasures for these systems.

An additional avenue for extending this research lies in the further development of FISSA.
This could include expanding support to a wider range of HDL tools, such as Vivado and Verila-
tor. Moreover, FISSA should incorporate more fault models from the literature, including those
targeting laser-based fault injection, X-ray attacks, and other emerging techniques. Improving
its integration into the design workflow is essential for ensuring ease of use, allowing designers
to adopt the tool more readily. Additionally, the implementation of a graphical user interface
would enhance usability by offering a direct and intuitive means of analysing simulation results.

A third perspective for future work is to conduct real-world FIAs on an FPGA board to assess
the D-RI5CY processor’s vulnerabilities under actual conditions. This would enable verification
of the effectiveness of our proposed countermeasures, extending beyond simulation results to
ensure real-world reliability. In particular, this approach would allow a thorough evaluation
of the two CSR registers against multi-bit faults, a task that was not fully feasible through
simulation.

Despite our proposed countermeasures, as demonstrated in Chapter 6, some FIAs may still
succeed. To achieve comprehensive protection, enhanced multi-bit fault mitigation strategies
are required. This could involve introducing redundancy into the registers or refining the Error
Correction Code by implementing more robust linear or cyclic codes, such as Low-Density Parity-
Check, or Bose–Chaudhuri–Hocquenghem codes, or Reed-Solomon codes. Although these codes
offer the potential to correct multiple-bit errors, they also come with significant overhead in
terms of area and computational complexity. For instance, BCH codes often require multiple
cycles to execute, and while they can theoretically be designed to operate in a single cycle, the
area costs would be substantial. Therefore, a careful evaluation is necessary to strike a balance
between performance and security.

Finally, a long-term perspective worth exploring is whether a DIFT mechanism could detect
FIAs occurring within the processor itself. A fault injection could alter the instruction path,
modify a value, or even compromise a tag, allowing the DIFT to detect such errors. The behaviour
of DIFT in response to FIAs should be thoroughly assessed to determine its viability as a built-in
protection mechanism.
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Chapter 8
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8.1 International peer-reviewed conferences with proceedings

1. William PENSEC, Vianney LAPÔTRE, Guy GOGNIAT, Scripting the Unpredictable:
Automate Fault Injection in RTL Simulation for Vulnerability Assessment, 2024 27th Eu-
romicro Conference on Digital System Design (DSD), Paris, France, August 2024, pp.
369-376, https://doi.org/10.1109/DSD64264.2024.00056.

2. Kévin Quénéhervé [177], William PENSEC, Philippe TANGUY, Rachid DAFALI, Vian-
ney LAPÔTRE, Exploring Fault Injection Attacks on CVA6 PMP Configuration Flow,
2024 27th Euromicro Conference on Digital System Design (DSD), Paris, France, 2024,
pp. 43-50, https://doi.org/10.1109/DSD64264.2024.00015.

3. William PENSEC, Francesco REGAZZONI, Vianney LAPÔTRE and Guy GOGNIAT,
Defending the Citadel: Fault Injection Attacks against Dynamic Information Flow Track-
ing and Related Countermeasures, IEEE Computer Society Annual Symposium on VLSI,
Knoxville, Tennessee, USA, July 2024, https://doi.org/10.1109/ISVLSI61997.2024.

00042.

4. William PENSEC, Vianney LAPÔTRE and Guy GOGNIAT, Another Break in the
Wall: Harnessing Fault Injection Attacks to Penetrate Software Fortresses, Proceedings
of the First International Workshop on Security and Privacy of Sensing Systems (Sensors
S&P), Istanbul, Türkiye, November 2023, Best Paper Award, https://doi.org/10.1145/

3628356.3630116.

8.2 International or National conferences without proceedings

1. Vianney LAPÔTRE, William PENSEC and Guy GOGNIAT, When in-core Dynamic
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June 2023, https://hal.science/hal-04381235
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Security (Mic-Sec Winter School), Paris, December 2022, https://hal.science/hal-

04727408

8.5 Source code

1. William PENSEC, Open source, FISSA: Fault Injection Simulation for Security Assess-
ment, https://github.com/WilliamPsc/FISSA

8.6 Popularising science event

1. Participation in a science outreach event, "Ma thèse en 180 secondes" ("My PhD Thesis in

180 seconds"), Rennes, March 2023, https://youtu.be/m_whL8xGbMQ

121

https://hal.science/hal-04727408
https://hal.science/hal-04727408
https://github.com/WilliamPsc/FISSA
https://youtu.be/m_whL8xGbMQ




Appendix A

APPENDICES

A.1 Strategies details – group composition

Table A.1: DIFT-related protected registers – strategy 3

Number of
bits

Number of
protected bits

Number of
redundancy bits

Number of
parity bits

Group 1 1 1 2 1
Group 2 1 1 2 1
Group 3 1 1 2 1
Group 4 1 1 2 1
Group 5 1 1 2 1
Group 6 2 2 3 1
Group 7 1 1 2 1
Group 8 1 1 2 1
Group 9 1 1 2 1

Group 10 1 1 2 1
Group 11 1 1 2 1
Group 12 5 5 4 1
Group 13 1 1 2 1
Group 14 1 1 2 1
Group 15 1 1 2 1
Group 16 1 1 2 1
Group 17 32 32 6 1
Group 18 1 1 2 1
Group 19 32 22 5 1
Group 20 32 22 5 1
Group 21 2 2 3 1
Group 22 1 1 2 1
Group 23 2 2 3 1
Group 24 4 4 3 1

Total 127 107 64 24
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Table A.2: DIFT-related protected registers – strategy 4

Number of
protected bits

Number of
redundancy bits

Number of
parity bits

Group 1 1 2 1
Group 2 1 2 1
Group 3 1 2 1
Group 4 1 2 1
Group 5 1 2 1
Group 6 2 3 1
Group 7 1 2 1
Group 8 1 2 1
Group 9 1 2 1

Group 10 1 2 1
Group 11 1 2 1
Group 12 5 4 1
Group 13 1 2 1
Group 14 1 2 1
Group 15 1 2 1
Group 16 1 2 1
Group 17 32 6 1
Group 18 1 2 1
Group 19 2 3 1
Group 20 2 3 1
Group 21 2 3 1
Group 22 2 3 1
Group 23 2 3 1
Group 24 2 3 1
Group 25 2 3 1
Group 26 3 3 1
Group 27 3 3 1
Group 28 2 3 1
Group 29 3 3 1
Group 30 3 3 1
Group 31 3 3 1
Group 32 3 3 1
Group 33 4 3 1
Group 34 1 2 1
Group 35 2 3 1
Group 36 2 2 1
Group 37 2 3 1
Group 38 4 3 1

Total 103 101 38
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Table A.3: DIFT-related protected registers – strategy 5

Number of
protected bits

Number of
redundancy bits

Number of
parity bits

Group 1 2 3 1
Group 2 2 3 1
Group 3 2 3 1
Group 4 2 3 1
Group 5 2 3 1
Group 6 2 3 1
Group 7 2 3 1
Group 8 2 3 1
Group 9 2 3 1

Group 10 2 3 1
Group 11 1 2 1
Group 12 32 6 1
Group 13 2 3 1
Group 14 2 3 1
Group 15 2 3 1
Group 16 2 3 1
Group 17 2 3 1
Group 18 2 3 1
Group 19 2 3 1
Group 20 2 3 1
Group 21 2 3 1
Group 22 2 3 1
Group 23 2 3 1
Group 24 2 3 1
Group 25 2 3 1
Group 26 2 3 1
Group 27 1 2 1
Group 28 2 3 1
Group 29 2 3 1
Group 30 2 3 1
Group 31 1 2 1
Group 32 1 2 1
Group 33 1 2 1
Group 34 1 2 1
Group 35 2 3 1
Group 36 2 3 1
Group 37 2 3 1
Group 38 2 3 1
Group 39 2 3 1

Total 102 114 39
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Résumé : La multiplication des objets connec-
tés dans des domaines tels que la santé ou
l’industrie soulève d’importantes préoccupations
en termes de sécurité. Ces systèmes, traitant
des données sensibles, sont vulnérables aux at-
taques logicielles et physiques en raison de leur
connectivité réseau et de leur proximité avec les
attaquants. Le suivi dynamique des flux d’infor-
mations (DIFT) détecte les attaques logicielles,
comme les maliciels, en étiquetant et en analy-
sant le flux de données durant l’exécution d’un
programme. Les attaques par injection de fautes
(FIA) induisent des erreurs (par exemple, via l’uti-
lisation d’impulsions laser) perturbant le compor-
tement et contournant les mécanismes de sécu-
rité. Les FIA sont critiques dans les systèmes
embarqués et cryptographiques, où les vulnéra-
bilités peuvent compromettre les données. Bien

que de nombreuses études aient exploré les vul-
nérabilités des FIA, aucune n’a ciblé les mé-
canismes DIFT. Nous travaillons sur le proces-
seur D-RI5CY, implémentant un DIFT matériel in-
core. Nous évaluons l’impact des FIA sur son ef-
ficacité. Pour ce faire, nous avons conçu et déve-
loppé FISSA, un outil permettant de simuler des
injections de fautes au niveau RTL. Nous avons
identifié un ensemble de registres sensibles aux
FIA et avons implémenté et comparé trois pro-
tections : la parité simple pour la détection, le
code de Hamming pour la correction d’erreurs
sur un bit, et SECDED pour détecter les erreurs
sur deux bits. Différentes stratégies d’implémen-
tation de ces protections ont été étudiées, et éva-
luées au regard de leur impact sur la surface, et
les performances, et en termes de sécurité face
à différents modèles de fautes.

Title: Enhanced Processor Defence Against Physical and Software Threats by Securing DIFT Against
Fault Injection Attacks
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Abstract: The expansion of the Internet of
Things (IoT) in sectors such as healthcare and
industry is concurrently increasing the attack sur-
face and giving rise to significant security con-
cerns. These systems, which process sensitive
data, are susceptible to both software and phys-
ical attacks due to their network connectivity
and proximity to potential attackers. Dynamic In-
formation Flow Tracking (DIFT) is a method of
detecting software attacks, such as malware,
by tagging and analysing the data flow during
the execution of a program. Fault injection at-
tacks (FIAs) induce errors (for example, through
the use of laser pulses) that disrupt the nor-
mal functioning of a system and bypass secu-
rity mechanisms. FIAs are of particular impor-
tance in the context of embedded and crypto-
graphic systems, where vulnerabilities can lead
to the compromise of data. Despite the existence

of numerous studies examining FIA vulnerabili-
ties, none have focused on DIFT mechanisms.
Our research is focused on the D-RI5CY pro-
cessor, implementing an in-core hardware DIFT.
The present study is concerned with evaluat-
ing the impact of FIAs on the effectiveness of
DIFT. To this end, we have designed and de-
veloped FISSA, a tool for simulating fault injec-
tions at the RTL level. A set of FIA-sensitive
registers was identified, and three protections
were implemented and compared: single parity
for detection, Hamming Code for single-bit er-
ror correction, and SECDED for double-bit er-
ror detection. The implementation of these pro-
tections was studied using different strategies,
which were evaluated in terms of their impact on
the area, and performance overhead and level of
security facing different fault models.
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