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Abstract—Embedded processors are key components of Internet of
Things (IoT) devices of Cyber-Physical Systems (CPSs) that manipulate
sensitive data. In order to mitigate software attacks, hardware-assisted
Dynamic Information Flow Tracking (DIFT) has been integrated into
embedded processors. Due to their proximity to attackers, IoT devices are
also exposed to physical attacks such as Fault Injection Attacks (FIAs).
In this paper, we protect DIFT from fault injection attacks by extending
current DIFT support with fault detection and correction capabilities. To
do so, we design, implement and evaluate two countermeasures based on
parity bit or Hamming code to protect DIFT-related registers of RISC-V
CPUs. Our experimental results, obtained using the D-RI5CY processor
as a use case, show a 100% fault detection and fault correction when
relying on a Hamming code-based protection and a low area overhead
(10.6%) compared to the original design.

Index Terms—Hardware security, RISC-V, DIFT, Fault Injections
Attacks, Error-Correcting Code, Countermeasures

I. INTRODUCTION

Internet-of-Things devices and Cyber-Physical Systems are used
in numerous domains such as home automation, medical sensing,
transports, critical infrastructures, smart security systems, etc. They
manipulate sensitive data and, in some cases, they also include
actuators to autonomously react to specific situations. Given the
network connectivity that these devices have and their pervasive
diffusion also in places possibly accessible by adversaries, these de-
vices are vulnerable to both software and physical attacks. Literature
demonstrates that combined software and physical attacks [1]–[4], are
indeed a threat for these devices, giving the attacker the possibility
to recover secret information or gain access to a device.

Dynamic Information Flow Tracking (DIFT) mitigates various
software attacks such as buffer overflow, format string or malware
by attaching and propagating tags to data containers at runtime [5].
Associated with a tag check security policy, it raises an alert when
malicious behaviour is detected. Because of its suitability, multiple
DIFT implementations have been studied in the literature: hardware,
software, and hybrid DIFT [6]. However, as demonstrated for other
processor’s security measures (TrustZone [4] and RISC-V PMP [2]
to mention a few), DIFT is open to physical attacks.

Addressing for the first time the problem of physical protection
of DIFT, in this paper, we extend an in-core DIFT operating at the
hardware level with error detection and protection capabilities. We
consider as a use case the D-RI5CY processor [7] and we deal with
an attacker able to inject faults in the DIFT-related registers. We
implement and evaluate two hardware countermeasures, simple parity
and Hamming Code, and we evaluate their suitability, robustness, and
overhead by performing fault injection at a granularity of bit using a
cycle-accurate simulator.

The rest of the paper is structured as follows. Section II presents
related work. Section III introduces the D-RI5CY processor and
explains the two protection mechanisms we are using in this paper.
Section IV presents the design of the proposed countermeasures. Sec-
tion V describes our experimental setup for fault injection simulations
and details the methodology. Section VI presents the results of the
different fault injections campaigns with and without countermea-
sures and compares them. Finally, Section VII concludes the work
and draws some perspectives.

II. RELATED WORK

DIFT monitors, at runtime, data flow of the application binary in
order to detect software attacks or to prevent data leakage. In [8], the
authors provide a comprehensive survey of the different Information
Flow Tracking (IFT) solutions from static IFT to DIFT. They present
both hardware and software IFT sub-categories. Information contain-
ers depend on which type of DIFT is used; these range from files to
registers.

Hardware DIFT solutions can be grouped into two main categories:
off-core and in-core. Off-core DIFT [9], [10] relies on a dedicated
coprocessor to perform tag-related operations. This approach does
not require internal processor modification and reduces the com-
putation load on the main processor. However, the communication
and synchronisation between the main processor and the coprocessor
need to be carefully managed. [11] proposes a software/hardware
method to protect the entire RISC-V-based SoC platform at runtime.
They implemented a coprocessor with a dedicated bus and a DIFT-
supported IP wrapper which does not change the architecture of
the main core. Compared with the off-core approach, in-core DIFT
does not require communication and synchronisation management,
but it leads to invasive modifications to the processor. Tag-related
operations are computed in parallel of data. For instance, works
presented in [12] and [7] offer a flexible hardware/software approach,
relying on an in-core hardware DIFT. These architectures allow for
flexible and configurable security policies to protect against a wide
range of attacks.

Despite these solutions providing an effective technique to address
certain software attacks, their robustness and protection against phys-
ical attacks, such as fault injection attacks, are largely unexplored.
FIA can be performed by disturbing the power supply or the clock, by
using EM pulses or laser shots [13]. The impact of an injection varies
depending on the type of FIA. For instance, laser-based injections
provide the best spatial and temporal precision while the power
supply or clock perturbation will affect the whole circuit, limiting
the spatial precision.



Many studies have shown the vulnerabilities of critical systems
against FIAs. [14] demonstrates that it is possible to recover com-
puted secret data using FIA in hidden registers on the RISC-V Rocket
processor. Electromagnetic fault injection (EMFI) attack can be used
to recover an AES key by targeting the cache hierarchy and the MMU,
as shown in [15]. Laser fault injections (LFI) can allow the replay of
instructions [16], that can lead to the overwriting of an entire section
of a program. [3] shows the use of glitch injections on the power
supply to control the program counter (PC). Voltage glitches can also
lead to glitch TrustZone mechanisms, as shown in [4]. Finally, authors
of [2] have shown that one can combine side-channel attacks (SCA)
and FIAs to bypass the PMP mechanism in a RISC-V processor.
Despite this large amount of literature about FIA, to the best of our
knowledge, the protection of DIFT against FIA has not been explored
yet.

Different types of countermeasures can be used to protect security
mechanisms against fault injection attacks. Numerous works in the
literature have proposed countermeasures for cryptographic devices.
[17] presents a survey of the different encryption algorithms (SNOW
3G, AES, RSA, Elliptic Curve Cryptography (ECC)) and presents the
possible attacks on these algorithms. The authors present hardware
countermeasures such as execution duplication, error detection code
(EDC), nonlinear EDC, redundancy (time or space) and parity bits.
When targeting processors, software countermeasures can also be
implemented. [18] analyses 19 implementations of software counter-
measure strategies and evaluates them in terms of performance and
security against fault injection attacks into a microcontroller simulator
based on an ARM Cortex-M3. Their results show that some simple
countermeasures perform better than more complex ones due to their
low memory or performance overhead. Moreover, combinations of
countermeasures can lead to high fault coverage, while maintaining
low resource overhead. However, software countermeasures usually
do not take into account the processor micro-architecture (i.e.,
pipeline, hidden registers, optimisations) reducing the efficiency of
the protections [19].

Since in-core DIFT mainly relies on a set of registers and logic
elements that are not directly manipulated by the software, software
countermeasures could be not practical to protect the entire DIFT.
Moreover, [20] has shown that software countermeasures based on
duplication and triplication can lead to significant overheads in terms
of execution time (resp. 2x to 4x) and code size (resp. 4x to 14x per
protected instruction). Because of this, in this work, we concentrate
on hardware-supported countermeasures. Authors of [21] propose
a solution based on Hamming Code and parity bits as signature
generators for an AES cipher. The proposed solutions allow detecting
faults while minimising the impact on timing performances, area and
power consumption, making Hamming Code extremely suitable for
our case. We selected to use Hamming Code because of this.

III. BACKGROUND

A. D-RI5CY architecture

Figure 1 presents an overview of the D-RI5CY processor. DIFT-
related modules are highlighted in red. These modules allow storing,
propagating and checking tags during the execution of a sensitive
application. 1-bit tags are stored parallel to the data they are as-
sociated with in the Data Memory and in the Register File Tag.
The 1-bit tag associated with the PC is used to detect a malicious
PC manipulation, for example during a return-oriented programming
attack. The security policy is configured through two CSRs (Config-
uration and Status Register) named TPR (Tag Propagation Register)
and TCR (Tag Check Register). The Tag Update Logic module is
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Fig. 1: D-RI5CY processor architecture overview

used to initialise or update the tag in the register file according to the
tagged data. Then, when a tag is propagated in the pipeline, the Tag
Propagation Logic module propagates tags according to the security
policy defined in the TPR. Once a tag has been propagated and its
data has been sent out of the pipeline, the Tag Check Logic modules
check that it conforms to the security policy defined in the TCR.
If not, an exception is raised. It is worth noting that the D-RI5CY
designers have chosen to rely on the illegal instruction exception
already implemented in the original RI5CY processor to manage the
DIFT exceptions. This choice minimises the area overhead of the
proposed solution.

Table I shows the TPR configuration for the security policy
considered in this paper. Each instruction type has a user-configurable
2-bit tag propagation policy field (except for Load/Store enable which
has a 3-bit tag) which is configured through a write instruction in
the CSR. The tag propagation policy determines how the instruction
result tag is generated according to the instruction operand tags. The
configuration presented in Table I allows propagating tags from the
source of a load/store and from the inputs for load/store, logic, shift,
jump and arithmetic modes with a logical OR on both inputs.

Table II shows the TCR configuration for the considered security
policy. Each instruction type has a user-configurable 3-bit tag control
policy field (except for Execute check, Branch check and Load/Store
check which have 1, 2 and 4-bit tag control policy fields respectively)
which can be configured. The configuration presented in Table II
checks the corruption of the PC address and the source and desti-
nation addresses of load/store operations. The tag verification policy
determines whether the integrity of the system is corrupted based on
the tags of the instruction’s operands. [22] details how TPR (Table I)
and TCR (Table II) configurations determine tag propagation and tag
checking for the considered security policy.

B. Threat Model

Our threat model considers an attacker able to inject faults into
DIFT-related registers, leading to bit-flips at any position of the
targeted register. To bypass the DIFT mechanism, the main attacker’s
goal is to prevent an exception from being raised. To reach this
objective, any DIFT-related register maintaining 1-bit tag value,
driving the tag propagation or the tag update process or maintaining
the security policy configuration can be targeted.

In [22], the authors study the impact of fault injections on the
D-RI5CY processor. They show that the DIFT vulnerabilities concern
mainly single bit-flip attacks. Indeed, DIFT computation relies on a 1-
bit data path. Studies presented in [23] and [24] have shown that such
precise single bit-flip attacks targeting registers can be performed
using, for example, laser shots.



TABLE I: Tag Propagation Register configuration

Load/Store Enable Load/Store Mode Logical Mode Comparison Mode Shift Mode Jump Mode Branch Mode Arith Mode

Bit index 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Policy 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0

TABLE II: Tag Check Register configuration

Execute Check Load/Store Check Logical Check Comparison Check Shift Check Jump Check Branch Check Arith Check

Bit index 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Policy 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d6 d5 d4 d3 d2 d1 d0r3 r2 r1 r0

1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001

Redundancy bits

Fig. 2: Hamming codeword

Recent works such as [25] have shown that multi-spot laser fault
injection setup can be used to improve attacks. Thus, we also consider
an attacker able to inject a single bit-flip in two registers at two
distinct clock cycles, with a minimum delay of one clock cycle. Con-
sequently, in order to protect the D-RI5CY DIFT mechanism while
minimising the area overhead, we choose to focus on lightweight
code-based protections able to address single bit-flip faults.

C. Simple parity code

Error detection is often achieved through the use of parity codes,
which involve adding an extra bit to the data bits for redundancy.
Simple parity codes can detect single-bit errors. We selected simple
parity code as a fault detection countermeasure because of its
suitability and limited overhead. Furthermore, as highlighted by [22]
DIFT vulnerabilities implemented in the D-RI5CY processor concern
single bit-flip attacks which makes simple parity code an appropriate
solution.

D. Hamming Code

Hamming Codes are a class of linear error-correcting codes in-
vented by Richard W. Hamming [26] in 1950. The main use of
these codes is to detect and correct errors. They are mostly used
in digital communication and data storage systems as error control
codes. Hamming Code can detect and correct single-bit errors or
detect double-bits errors. This code is based on the principle of
adding r redundancy bits to d data bits such that 2r ⩾ d + r + 1.
For example, for an 8-bit word it needs 4 redundancy bits while
for a 32-bit word, it needs only 6 redundancy bits. The redundancy
bits are set to indexes equivalent to powers of 2 (1, 2, 4, 8, 16,
. . . ) in the new concatenation between the word and the redundancy
bits. By positioning the redundancy bits at the indexes of powers of
two, it is then possible to correct an error if one is detected. Thus,
for example, Hamming Code (11,7), 7-bit data (d0 − d6) and 4-bit
of redundancy (r0 − r3), data bits and redundancy bits are placed
according to figure 2.

Equation 1 shows how the redundancy bits are computed from the
data bits.

r0 = d0 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d6

r1 = d0 ⊕ d2 ⊕ d3 ⊕ d5 ⊕ d6

r2 = d1 ⊕ d2 ⊕ d3

r3 = d4 ⊕ d5 ⊕ d6

(1)

Hamming Code incurs a limited overhead, despite the correction
capabilities. Because of this, we selected them to provide error
correction capabilities to our DIFT.

IV. FAULT DETECTION/CORRECTION IMPLEMENTATION

The target architecture we used in this paper is the D-RI5CY DIFT.
The D-RI5CY DIFT mechanism implements 55 registers, maintaining
a total of 127 bits. Columns 2 and 3 of Table III detail the register
distribution. Two 32-bit registers (TPR and TCR), a set of 32 1-bit
registers building the tag register file, a 5-bit register maintaining the
destination register file address and a set of 20 1-bit, 2-bit and 4-
bit registers dedicated to control. Each of these registers needs to be
protected against FIA.

The implementation cost of detection and correction codes highly
depends on the bit-width of the protected value. For instance, con-
sidering Hamming Code, 2 redundancy bits have to be generated to
protect a single bit while 6 redundancy bits are necessary for a 32-bit
value. To minimise the overhead while maintaining a high level of
protection, we have chosen to group registers to be protected into 5
groups. Table III presents the 5 groups we consider. 32-bit TCR and
TPR configuration registers are individually protected. However, only
up to 22 bits of these registers are actually used for the configuration
of the DIFT mechanism. The tag register file maintaining 32 1-bit tags
is protected as a single value (i.e., a unique parity bit or Hamming
Code value is associated to the 32 1-bit registers). A 5-bit register
storing the tag destination address is kept in a separate group to
minimise the impact on the pipeline micro-architecture. Finally, 20
DIFT-related registers dedicated to tag propagation and control are
grouped to form a 26-bit value to be protected. Table III shows that
to detect a single bit-flip in the DIFT-related registers using a simple
parity code, 5 extra 1-bit registers need to be implemented while to
detect and correct such faults using Hamming Code, only three 5-bit,
one 6-bit and one 4-bit extra registers are necessary.

Figure 3 presents the proposed code-based protection scheme for
independent registers (control signals are not reported, preserving
the figure clarity). This solution has been adopted for groups 1, 2, 4
and 5 of Table III. In this approach, a set of registers is associated
to a unique parity bit when considering simple parity code or by
redundancy bits when using Hamming Code. This information is
generated based on the register inputs by an Encoder and stored in a
dedicated extra register. A Decoder allows the detection of an error
caused by a fault injection, leading to a bit-flip in one of the protected
registers. When implementing Hamming Code-based protection, the
Decoder produces corrected outputs presented in dashed arrows in
Figure 3. In the proposed approach, these results are 1) propagated
to the rest of the design to ensure its correct behaviour and 2)
multiplexed with protected registers inputs in order to correct the



TABLE III: DIFT-related protected registers

Protected register Number of protected bits Number of parity
bits for Simple Parity

Number of redundancy
bits for Hamming Code

Group 1 TCR 22 1 5
Group 2 TPR 22 1 5
Group 3 Register File (Tag) 32 1 6
Group 4 Tag destination address 5 1 4

Group 5
16×1-bit registers
3×2-bit registers
1×4-bit register

26 1 5

Total 107 5 25

stored value when necessary (i.e., when the faulty register is not
written with a fresh input).

Figure 4 depicts the proposed code-based protection scheme for
the tag register file (group 3 of Table III) (as before, control signals
are not reported for clarity). In the proposed scheme, a set of 32
1-bit registers is associated to 1 parity bit with the simple parity
protection or to 6 redundancy bits when using Hamming Code. As
in the previous case, the Decoder allows the detection of an error
due to a bit-flip fault in one of the registers. With Hamming Code
protection, the Decoder produces corrected outputs (dashed arrows)
which are propagated to the tag register outputs. If a fault is detected,
the corrected output is forwarded to the tag register interface. As
soon as one of the two input ports is available, this corrected value
is stored in the faulty register to correct the detected fault. A fresh
input value has priority on the corrected value to ensure the data
flow correctness. It is worth noting that to minimise the impact on
the original D-RI5CY tag register file design, we have chosen to rely
on the existing 2 input ports interfaces instead of adding a third input
port dedicated to correction.
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V. EVALUATION SETUP

In this section, we present our methodology for fault injection and
the simulation campaign performed with the 2 use cases selected to
stimulate the DIFT-related hardware modules.

We created a TCL script generator for Siemens Questasim to sim-
ulate the core and DIFT and to automatically handle the simulations
and classifications of the simulation results.

Faults are injected into all 55 DIFT-related registers at cycle-
accurate and bit-accurate levels. Moreover, when considering a pro-
tected design, countermeasure-related registers are also targeted. Each
simulation logs information such as stop cycle, end-status, data in
the registers file and associated tags, instruction register, etc. This
data set is used to classify the end-of-simulation status. As in [22],
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Fig. 4: Proposed scheme for code-based protections of the D-RI5CY
tag register file

to stimulate DIFT-related hardware modules of the D-RI5CY DIFT
mechanism when considering FIA, we have implemented two use
cases: buffer overflow and format string attack relying on security
policy from Tables I and II. The first use case enables the DIFT
protection on the program counter (PC) when the attacker tries to
modify the return address register. The second use case activates the
DIFT protection in order to monitor load and store operations. The
next subsections describe these use cases.

A. First use case: buffer overflow attack

The first use case involves a buffer overflow leading to a Return-
Oriented Programming (ROP) attack1 and subsequent shell code
execution. In this case, the attacker leverages a buffer overflow to
access the return address (ra) register. The DIFT mechanism comes
into play as the tag associated with the manipulated buffer data
overwrites the ra register’s tag. Since the user manipulates the buffer
data, it’s tagged as untrusted (tag value = 1). During the return
from the called function, the corrupted ra register is loaded into PC
through a jalr instruction. This hijacks the execution flow, allowing
the first shell code instruction to be fetched. This attack scenario
sheds light on how DIFT behaves when monitoring the PC tag. The
attack window for this use case represents 6 clock cycles where we
fault the DIFT-related part of the core.

B. Second use case: format string attack

The second use case involves a format string attack2, where the at-
tacker exploits a vulnerability to overwrite a function’s return address
and execute shell code. In this attack, the printf() function from
the C library is exploited using %u and %n formats (see Chapter 12,

1https://github.com/sld-columbia/riscv-dift/blob/master/pulpino apps
dift/wilander testbed/

2https://github.com/sld-columbia/riscv-dift/tree/master/pulpino apps
dift/wu-ftpd

https://github.com/sld-columbia/riscv-dift/blob/master/pulpino_apps_dift/wilander_testbed/
https://github.com/sld-columbia/riscv-dift/blob/master/pulpino_apps_dift/wilander_testbed/
https://github.com/sld-columbia/riscv-dift/tree/master/pulpino_apps_dift/wu-ftpd
https://github.com/sld-columbia/riscv-dift/tree/master/pulpino_apps_dift/wu-ftpd


TABLE IV: Logical fault injection simulation campaigns results for single bit-flip in one register at a given clock cycle

Crash Silent Delay Detection Detection & Correction Success Total

Buffer overflow
No protection 0 738 12 — — 12 (1.57%) 762

Simple parity code 0 0 0 792 — 0 792
Hamming Code 0 0 0 — 912 0 912

Format String
No protection 0 946 41 — — 29 (2.85%) 1,016

Simple parity code 0 0 0 1,056 — 0 1,056
Hamming Code 0 0 0 — 1,216 0 1,216

TABLE V: Logical fault injection simulation campaigns results for single bit-flip in two registers at two clock cycles

Crash Silent Delay Detection Detection & Correction Success Total

Buffer overflow
No protection 0 238,633 1,143 — — 2,159 (0.89%) 241,935

Simple parity code 0 0 0 261,360 — 0 261,360
Hamming Code 0 0 0 — 346,560 0 346,560

Format String
No protection 0 429,260 12,192 — — 10,160 (2.25%) 451,612

Simple parity code 0 0 0 487,872 — 0 487,872
Hamming Code 0 0 0 — 646,912 0 646,912

Section 12.14.3 in [27] for detailed information). %u prints unsigned
integer characters, while %n stores the number of printed characters in
memory. The value used for %n, referred to as ’a’, is user-defined and
tagged as untrusted for DIFT computations. The vulnerable statement
is: printf(”%224u%n%35u%n%253u%n%n”, 1, (int*) (a-4), 1,(int*)
(a-3), 1, (int*) (a-2), (int*) (a-1)). This leads to writing specific
values at various memory addresses, with the attacker’s goal being
to overwrite the return address with 0x3e0 to trigger a shell code
execution. However, security policy prohibits the use of untrusted
variables as store addresses. Since variable ’a’ is untrusted, the DIFT
protection raises an exception when trying to store a value at memory
address ’(a-4)’. This use case has been selected to activate the
load/store modes of the DIFT policy. The attack window for this use
case represents 8 clock cycles where we fault the DIFT-related part
of the core.

VI. EXPERIMENTAL RESULTS

This section presents logical fault injection simulation results
considering two fault models: single bit-flip in one register at a
given clock cycle and single bit-flip in two registers at two clock
cycles. Regarding the first fault model, Table IV shows the results
obtained for the 2 considered use cases with and without protections.
For protected implementations, faults are injected into both DIFT-
related and protection-related registers. It is worth noting that we
never get any crashes since we target the DIFT-related registers only.
These registers do not impact the control or instruction flow executed
by the processor. This table shows that without any protection 12
fault injections among 762 (1.57%) lead to a successful attack (i.e.,
bypassing the DIFT mechanism) for the buffer overflow use case
while we observe 29 successes among 1,016 (2.85%) for the format
string use case. Table V presents the results obtained considering
the single bit-flip in two registers at two clock cycles fault model.
It shows that without any protection 2,159 fault injections among
241,935 (0.89%) lead to a successful attack for the buffer overflow
use case while we observe 10,160 successes among 451,612 (2.25%)
for the format string use case.

In Table IV and V, column ”Silent” means that the fault did not
impact the current simulation behaviour. Even if we can consider that
these numbers of successes are low compared to the total number
of simulations, it should be noted that an attacker only needs to

TABLE VI: FPGA implementation results

Protection Number of LUT Number of FF Maximum frequency

D-RI5CY 6714 2457 47.6 MHz
Simple parity 7023 (4.6%) 2491 (1.4%) 47.1 MHz (-1.05%)

Hamming Code 7419 (10.5%) 2640 (7.4%) 46.5 MHz (-2.31%)

succeed once to gain access to the system. If we consider, as raised
by [24], that the attacks are reproducible, if the attacker succeeds 1
time in one place he can start again as many times as necessary. It is
therefore crucial to protect the system even if only a small number
of attacks succeed. Despite these cases do not lead to a DIFT bypass,
we can note that fault injections can cause a delay in the exception
signal. It is worth noting that the number of simulations differs
for each scenario because parameters such as the attack window
and the number of target registers depend on the use case and the
implemented protection (more registers for Hamming Code than for
parity bit protection, as shown in Table III).

Using simple parity code allows detecting 100% of the injected
faults. However, these faults are not corrected, and the program
execution is halted. Results presented in Tables IV and V show that
relying on Hamming Code provides an efficient solution to detect
and correct all injected faults. In this case, the correct program
execution is guaranteed, and the software attack is detected by the
DIFT mechanism.

Table VI shows implementation results targeting the Xilinx Zynq-
7000 of the Zedboard development board. Synthesis and implemen-
tation is performed using Vivado 2015.1 for 1) the original processor
without any protection against FIA, 2) a processor version implement-
ing simple parity code to protect the DIFT-related registers and 3) a
processor version implementing Hamming Code for fault detection
and correction. Results presented in Table VI allow a comparison in
terms of timing performances and area overheads. Regarding LUT,
protection leads to an overhead of 4.6% for simple parity protection
and 10.5% for Hamming Code protection compared to the original
design. The number of flip-flops grows by 1.4% for the simple parity
protection and up to 7.4% for Hamming Code. Regarding maximum
frequency, we observe that the proposed protections have a negligible
impact on timing performances for the targeted FPGA.

Experiments results presented in Tables IV, V and Table VI show



that protecting DIFT-related registers of the D-RI5CY processor using
Hamming Code to detect and correct all possible single bit-flip faults
leads to an area overhead of only 6% compared to a simple parity
code used for fault detection only. These results claim in favour of
the adoption of Hamming Code-based protection scheme in such a
small processor.

VII. CONCLUSION

This paper proposes to protect an in-core DIFT mechanism against
fault injection attacks. The proposed approach relies on detection and
correction codes to protect DIFT-related registers. Two protection
schemes have been proposed. The first one provides a solution
to protect a set of independent registers, while the second one is
dedicated to the protection of the tag register file. Experimentation
results show that the proposed approach allows the detection and
correction of any single bit-flip in DIFT-related registers. Moreover,
the proposed FPGA implementation of the proposed solutions for the
D-RI5CY shows a maximum area overhead of 10.5% and no impact
on timing performances.

In the future, we plan to extend this work by considering more
complex fault models. This includes multiple injection capabilities
and multi-bits fault models. We will study the impact of such fault
models on the proposed protection scheme and propose original
protection schemes when necessary. Furthermore, we plan to study
the impact of register groups composition on proposed protection
efficiency. Finally, we would like to perform actual fault injection
campaigns to complete our work.
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Gogniat, “Armhex: A hardware extension for dift on arm-based socs,”
in 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), 2017. DOI: 10.23919/FPL.2017.8056767.

[11] K. Chen, L. Sun, and Q. Deng, “Hardware and Software Co-verification
from Security Perspective in SoC Platforms,” Journal of Systems
Architecture, 2022. DOI: 10.1016/j.sysarc.2021.102355.

[12] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A Flexible Infor-
mation Flow Architecture for Software Security,” in Proceedings of
the 34th Annual International Symposium on Computer Architecture,
Association for Computing Machinery, 2007. DOI: 10.1145/1250662.
1250722.
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