
Scripting the Unpredictable: Automate Fault
Injection in RTL Simulation for Vulnerability

Assessment
William PENSEC

Université Bretagne Sud
UMR 6285, Lab-STICC

Lorient, France
william.pensec@univ-ubs.fr

Vianney LAPÔTRE
Université Bretagne Sud
UMR 6285, Lab-STICC

Lorient, France
vianney.lapotre@univ-ubs.fr

Guy GOGNIAT
Université Bretagne Sud
UMR 6285, Lab-STICC

Lorient, France
guy.gogniat@univ-ubs.fr

Abstract—This paper presents FISSA, an open-source software
tool that facilitates the building of fault injection campaigns based
on well-known HDL simulation tools. The proposed solution
relies on two software modules that encapsulate an existing HDL
simulator. The first module generates TCL scripts to drive the
simulation process and automatically inject faults according to
the user’s needs. The second module is dedicated to fault analysis,
enabling users to assess the resilience of their design. The
proposed approach allows the designers to seamlessly integrate
fault injection simulations into their workflow. To demonstrate
the solution’s capacity, this paper proposes a case study to
evaluate the robustness of a Dynamic Information Flow Tracking
mechanism integrated into a RISC-V processor against different
fault injection scenarios. For that purpose, a total of 360,747
simulations have been performed.

Index Terms—Hardware security, Physical Attacks, Fault in-
jection simulation, Open-Source tool, Vulnerability Assessment

I. INTRODUCTION

Internet of Things (IoT) devices have transformed the way
we interact with our environment by enabling seamless data
collection and analysis for increased efficiency in various
domains. However, this increased connectivity also raises con-
cerns about potential physical attacks, such as fault injection
attacks (FIA) [1], [2] gaining attention in recent years.

Many studies have shown the vulnerabilities of critical sys-
tems against FIAs. In [3], authors demonstrate the possibility
to recover computed secret data using FIA targeting hidden
registers on the RISC-V Rocket processor. In [4], Electro-
magnetic Fault Injection (EMFI) attack is used to recover
an AES key by targeting the cache hierarchy and the MMU.
In [5], it is shown that laser fault injection (LFI) allows the
replay of instructions. This leads to the overwriting of a whole
program section. Finally, authors of [6] have shown that one
can combine side-channel attacks (SCA) and FIAs to bypass
the PMP mechanism in a RISC-V processor. It is therefore
necessary, when designing a circuit, to assess its sensitivity to
FIA as soon as possible.

This paper focuses on automating the evaluation of circuit
design robustness against FIA using simulations at an early

stage of the development cycle. The use of simulations for
fault injection campaigns enables researchers to systemati-
cally explore the impact of injected faults on the targeted
system in a controlled and repeatable environment. In this
context, a fault injection campaign refers to an organised
series of simulated events designed to assess the system’s
robustness, identify vulnerabilities, and evaluate its resilience
under various fault conditions. This approach allows for a
comprehensive examination of the system’s behaviour across
multiple scenarios, providing valuable insights into potential
weaknesses and helping to develop robust countermeasures.

In this paper, we present FISSA (Fault Injection Simulation
for Security Assessment), a new tool, designed to generate
fault injection campaigns relying on existing simulation en-
vironments (HDL simulator) such as Questasim, Vivado or
Verilator. The proposed approach allows the designer to rely
on the same environment for both design flow and security
assessment against FIA attacks, providing valuable informa-
tion for the development of effective defence mechanisms. The
interest of FISSA is demonstrated in a case study focusing
on the D-RI5CY processor [7]. We present the tool workflow
when using the Questasim HDL simulator. Finally, we present
and discuss a set of results obtained through FISSA.

The rest of the paper is structured as follows. Section II
presents related work. Section III presents the proposed tool.
Section IV details our case study and discusses obtained
results. Finally, Section V concludes the work and draws some
perspectives.

II. RELATED WORK

This section presents recent works related to methods and
tools for vulnerability assessment when considering fault
injection attacks. For such vulnerability assessment, main
strategies include actual fault injections, emulations, formal
methods and simulations. In this paper, we are focusing into
fault simulation tools for application security and not for
safety, i.e [8].

Actual FIAs involve physically injecting faults into the
target hardware using techniques such as variations in supply



TABLE I
FAULT INJECTION BASED METHODS FOR VULNERABILITY ASSESSMENT COMPARISON

References Cost
Control over

fault scenarios Scalability Speed of execution Realism Expertise

Formal Methods [9]–[12] Very low Very high Very low Low Low Very high
RTL Simulations [13]–[15] Very low Very high Low Low/Moderate Moderate Low
Emulations [16]–[19] High Moderate High Very high High Moderate
Actual FIA [1], [20]–[22] Very high Very low Very high Very high Very high Very high

voltage or clock signal [1], [20], laser pulses [1], [22], electro-
magnetic emanations [1] or X-rays [21]. This approach offers
valuable insights into the real impact of faults on hardware
components. However, a significant drawback of actual fault
injections is that they demand considerable expertise to prepare
the target, involving intricate setup procedures. Additionally,
this approach can only be executed once the physical circuit
is available, potentially delaying the vulnerability assessment
process until later stages of development.

Fault emulation can, for instance, rely on FPGA [16], or
on an emulator such as QEMU [17], [18] to perform fault
injection campaigns. This approach is four times faster than
simulation-based techniques [19], and unlike simulation-based
or formal method-based fault injections techniques, the size of
the evaluated circuit has no major impact on the fault injec-
tion campaign timing performances. However, configuring an
emulation environment can be complex and time-consuming.
Achieving an accurate representation of the target system
may require detailed configuration and parameter tuning. The
accuracy of emulation is contingent on the quality of the
models used to replicate the target hardware. If the models
are inaccurate or incomplete, the results of fault injections
may not precisely reflect actual behaviour.

Formal methods provide an advantage with mathematical
proofs, ensuring a rigorous verification of the system’s be-
haviour during fault injection experiments. Formal methods
approaches such as [9] allow the analysis of a circuit design in
order to detect sensitive logic or sequential hardware elements.
[10], [11] and [12] present formal verification methods to
analyse the behaviour of HDL implementation. However, this
type of tool usually suffers from restrictions limiting its
actual usage on a complete processor. Conventional formal
approaches encounter scalability challenges due to limitations
in verification techniques. In particular, the circuit structure it
can analyse is usually limited.

Fault Injections simulations can be performed at processor
instructions level. Authors of [13] explore the impact of
fault injection attacks on software security. They evaluate
four open-source fault simulators, comparing their techniques
and suggest enhancing them with AI methods inspired by
advances in cryptographic fault simulation. [14] is an open-
source deterministic fault attack simulator prototype utilising
the Unicorn Framework and Capstone disassembler. [15] in-
troduces VerFI, a gate-level granularity fault simulator for

hardware implementations. For instance, it has been used to
spot an implementation mistake in ParTI [23]. However, this
tool has been developed to check if implemented counter-
measures can really protect against fault injection on crypto-
graphic implementations, but it cannot evaluate components
such as registers or memories. In this paper, we focus on
RTL simulations at Cycle Accurate Bit Accurate (CABA),
which provides a controlled virtual environment for injecting
faults. There are several solutions of simulations in an HDL
simulator like Questasim, Vivado, etc. Behavioural simulation
is used to detect functional issues and ensuring that the design
behaves as expected. Post-synthesis simulation verifies that the
synthesised netlist matches the expected functionality. Timed
simulation is used to ensure that the design meets timing
requirements and can operate at the specified clock frequency.
And finally, post-implementation simulations are used to verify
that the implemented design meets all requirements and con-
straints, including those related to the physical layout on the
target. Simulation-based fault injection offers the advantage of
enabling designers to test their system throughout the design
cycle, providing valuable insights and uncovering potential
vulnerabilities early in the development process. However, a
limitation lies in the potential lack of absolute fidelity to actual
conditions, as simulations might not perfectly replicate all
hardware intricacies, introducing a slight risk of overlooking
certain faults that could manifest in the actual hardware.

Table I shows a comparison between these four methods for
vulnerability assessment when considering FIA regarding six
metrics. These metrics are the financial cost of setting up the
fault injection campaign, the control over fault scenarios (how
configurable are the scenarios), scalability which refers to the
method capacity to be applied to systems of different sizes or
complexities, speed of execution of the campaign, realism of
the fault injection campaign and the level of required expertise.
Table I shows that no method is completely optimal. Each
method has its own advantages and disadvantages and must
be chosen by the designer according to the requirements and
the available financial and human resources. Indeed, setting
up an actual fault injection campaign requires much more
expertise in this domain and also requires costly equipment,
whereas setting up a simulation campaign can be easier for
a circuit designer familiar with HDL simulation tools such as
Questasim. Table I shows that RTL simulation offers a good
compromise to assess the security level of a circuit design.



In particular, it provides an efficient solution for investigating
security throughout the design cycle, enabling the concept of
“Security by Design”.

III. FISSA
This section presents our open-source tool, FISSA1, to

help circuit designers to analyse, throughout the design cycle,
the sensitivity to FIA of the developed circuit. Figure 1
presents the software architecture of FISSA. It consists of 3
different modules: TCL generator, Fault Injection Simulator
and Analyser. The first and third modules correspond to a set
of Python classes.

The TCL generator, detailed in Section III-B, relies on a
configuration file and a target file to create a set of parame-
terised TCL scripts. These scripts are tailored based on the
provided configuration file and are used to drive the fault
injection simulation campaign.

Fault Injection Simulator, detailed in Section III-C, per-
forms the fault injection simulation campaign based on inputs
files from TCL generator for a circuit design described through
HDL files and memory initialisation files. For that purpose it
relies on an existing HDL simulator such as Questasim [24],
Verilator [25], or Vivado [26].

The Analyser, detailed in Section III-D, evaluates the out-
comes of the simulations and generates a set of files that allows
the designers to examine fault injection effects on their designs
through various information.

Config
file

(.json)

Targets
(.yaml)

TCL
generator

TCL
Scripts

Fault
Injection
Simulator

Memory
Init

(.mem)

HDL
files

(.sv, .v)

Log
files

(.json)
Analyser

Heatmap
(.pdf)

LATEX
Tables
(.tex)

Fig. 1. Software architecture of FISSA

Algorithm 1 shows a representation of a fault injection
campaign. The algorithm requires a set of targets (i.e. hardware
elements in which a fault should be injected), the fault model
and the considered injection window(s) which identifies the
period(s), in number of clock cycles, in which fault injections
are performed. Then, it runs a first simulation with no fault
injected, which is used as a reference for comparison with the
following simulations to determine end-of-simulation statuses.
Then, for each target, each fault model and for each clock cycle
within the injection window, the corresponding simulation is
executed, and the corresponding logs are stored in a dedicated
file. Customising end-of-simulation statuses allows for adapta-
tion to the specific requirements of each design assessment. To
configure these statuses, adjustments need to be made either
directly in FISSA’s code or the HDL code. This process may
involve evaluating factors such as:

1https://github.com/WilliamPsc/FISSA/tree/main

• hardware element content (signal, registers, . . . ),
• simulation time (e.g. the simulation exceeds a reference

number of clock cycles),
• simulation’s end (e.g. an assert statement introduced in

the HDL code is reached)

Algorithm 1 Simulated FIA campaign pseudo-code
Require: targets← list(targets)
Require: faults← list(fault model)
Require: windows← list(injection windows)

1: ref sims = simulate()
2: for target ∈ targets do
3: for fault ∈ faults do
4: for cycle ∈ windows do
5: logs = simulate(target, fault, cycle)
6: end for
7: end for
8: end for

A. Supported Fault models

A set of fault models has already been integrated into
FISSA. For a given fault injection campaign, the relevant fault
model is defined in the input configuration file and is applied
to targets during the simulation phase. Currently, supported
fault models are:

• target set to 0/1,
• single bit-flip in one target at a given clock cycle,
• single bit-flip in two targets at a given clock cycle,
• single bit-flip in two targets at two different clock cycles,
• exhaustive multi-bits faults in one target at a given clock

cycle,
• exhaustive multi-bits faults in two targets at a given clock

cycle.

B. TCL Generator

The TCL Generator is used to generate the set of TCL script
files which drive the fault injection simulator. This module
requires two input files.

Figure 2 details the TCL Generator. Each blue box repre-
sents a python class used to generate the set of output TCL
scripts. The initialisation class gets inputs from a configuration
file. This JSON-formatted file includes various parameters
such as the targeted HDL simulator, the considered fault model
and the injection window(s). Furthermore, it encompasses
parameters such as the clock period (in ns) of the HDL
design and the maximum number of simulated clock cycles
used to stop the simulation in case of divergence due to
the injected fault. Moreover, one extra parameter defines the
quantity of simulations per TCL file, allowing a simulation
parallelism degree. The Targets file contains, in YAML format,
the list of the circuit elements (e.g. registers or logic gates)
that need to be targeted during the fault injection campaign.
For each target, its HDL path and bit-width are specified.
TCL Script Generator class gets the configuration parameters
from Initialisation class, reads the Targets’ file and calls three

https://github.com/WilliamPsc/FISSA/tree/main


others classes. The first one, Basic Code Generator, undertakes
the fundamental generation of TCL code for initialising a
simulation, running a simulation, and ending a simulation.
The second one, Fault Generator, produces the TCL code
related to fault injection. The TCL Script Generator provides
specific parameters to the Fault Generator to produce code for
a designated set of targets and a specified set of clock cycles
for fault injection. The third one, Log Generator, produces
the TCL code to produce logs after each simulation. Logs
comprise the simulation’s ID, fault model, faulted targets,
injection clock cycle(s), end-of-simulation status, values for
all targets, and the end-of-simulation clock cycle. This data
constitutes the automated aspect of logging. Finally, the TCL
Script Generator outputs a set of TCL files, each one cor-
respond to a batch of simulations. It is worth noting that
each batch starts with a reference simulation (i.e. without fault
injection). This allows the user to perform a per batch results
analysis. Furthermore, it produces a target file used by TCL
scripts to get the target list (see Subsection III-C).

Config
file

(.json)
Initialisation

Targets
(.yaml)

TCL Script
Generator

Basic Code
Generator

Fault
Generator

Log
Generator

TCL
Scripts
(.tcl)

Targets
(.yaml)

Fig. 2. Software architecture of the TCL Generator module

Algorithm 2 depicts a fault injection simulation pseudo-
code, showcasing requirements, each state with essential pa-
rameters, and the corresponding Python class from Figure 2.
Line 5 in Algorithm 1 corresponds to Algorithm 2. This
algorithm is executed multiple times with different inputs to
build a TCL script.

Algorithm 2 FIA simulation pseudo-code
Require: target
Require: cycle
Require: fault model

1: tcl script = init sim(fault model, cycle, target) //

generated by Basic Code Generator

2: tcl script+ = inject fault(fault model) // generated by

Fault Generator

3: tcl script+ = run sim() // generated by Basic Code Generator

4: tcl script+ = log sim(fault model) // generated by Log

Generator

5: tcl script+ = end sim() // generated by Basic Code Generator

6: tcl file.write(tcl script)

C. Fault Injection Simulator

The Fault Injection Simulator mainly relies on an existing
HDL simulator to perform simulations by executing the TCL

scripts produced by the TCL generator. The log files, in
JSON format, are generated by the TCL script for each
simulation. This file encompasses data such as the current
simulation number, the executed clock cycle count, the values
of the targets’ file, the targets faulted, the fault model and
the end-of-simulation status. It is worth noting that the set
of calls to the generated TCL scripts has to be integrated
into the designer’s existing design flow, allowing the design
compilation, initialisation, and management of input stimuli.
The use of TCL scripts simplifies such an integration. Once
all the fault injection simulations have been performed, the
log files can be sent to the Analyser which, is described in the
following subsection.

D. Analyser

The Analyser reads all log files and generates a set of
LATEX tables (.tex files) and/or sensitivity heatmaps (in PDF
format) according to the fault models, allowing the user to
identify the sensitive hardware elements in the circuit design.
The generated tables can be customised through modifica-
tion in the Analyser Python code. The current configuration
captures and counts the diverse end-of-simulation status (see
Section IV-C for an example). Heatmaps are generated for
multi-target fault models. For instance, when considering a
2 faults scenario disturbing two hardware elements, a 2-
dimension heatmap allows the user to identify sensitive cou-
ples of hardware elements leading to a potential vulnerability.
Their configuration can be adapted by modifying the Analyser
Python code. Heatmaps generation is based on Seaborn [27]
which relies on Matplotlib [28]. This library provides a high-
level interface for drawing attractive and informative statistical
graphics and save them in different formats like PDF, PNG,
etc. In the current configuration, heatmaps highlight the targets
leading to a specific end-of-simulation status (e.g. a status
identified by the designer as a successful attack). An example
of such heatmap is presented in Subsection IV-C. Once the
results have been generated, they can easily be inserted into a
vulnerability assessment report.

E. Extending FISSA

In order to extend FISSA for integrating an additional
fault model, some modifications to the TCL Script Generator,
the Basic Code Generator, the Fault Generator and Log
Generator modules are necessary. It requires the extension of
the init sim, inject fault and log sim functions presented in
Algorithm 2 to implement the new fault model from initiali-
sation to logging. For instance, these extensions should define
the targets for each simulation, the impact of the injections (set
to 0/1, bit-flip, random, etc) and the set of data to be logged for
this fault model. The Log Generator automates the extraction
of specific segments from the ongoing simulation. However, it
is customisable, enabling the modification of logged elements,
such as incorporating memory content or a list of signals.

Analyser can be extended to produce additional LATEX tables,
heatmaps or any other way of results visualisation. This can



CONTROLLER

IF
/
ID

ID
/
E
X

E
X
/
W

B

PC T

Tag Check

Logic

Instruction

Memory

Instruction

Cache

Decoder

Exception

Controller

Register

File
T

Tag Update

Logic

ALU

CSR
TPR

TCR

MULT

DIV FPU

Tag

Propagation

Logic

LSU

Tag Check

Logic

Data

Memory
T

D-RI5CY
in-core

off-core

off-core

Fig. 3. D-RI5CY processor architecture overview

be achieved by either modifying the existing methods or by
developing new ones.

An integral aspect of expanding FISSA involves adjusting
functions depending on the used HDL simulator. Despite the
definition of the TCL language, specific commands vary be-
tween simulators. For instance, in Questasim, injecting a fault
into a target can be accomplished with the command: “force
<object name><value>-freeze -cancel <time info>” [29],
whereas in Vivado, the equivalent command is: “add force
<hdl object><values>-cancel after <time info>” [30].

IV. USE CASE

This section presents a case study to demonstrate the interest
of the proposed solution. It focuses on the evaluation of the
robustness of the Dynamic Information Flow Tracking (DIFT)
mechanism integrated to the D-RI5CY [7] processor.

A. D-RI5CY DIFT mechanism

The D-RI5CY core is a 4-stage in-order 32-bit RISC-V
processor. It introduces a Dynamic Information Flow Tracking
(DIFT) mechanism to protect the processor against software
attacks such as buffer overflows or SQL injections. Figure 3
presents an overview of the D-RI5CY processor. DIFT-related
modules are highlighted in red. These modules allow storing,
propagating and checking tags during the execution of an
application. The security policy is configured through two
CSRs (Configuration and Status Register) named TPR (Tag
Propagation Register) and TCR (Tag Check Register). The
Tag Update Logic module is used to initialise or update the
tag in the register file according to the tagged data. Then,
when a tag is propagated in the pipeline, the Tag Propagation
Logic module propagates tags according to the security policy
defined in the TPR. Once a tag has been propagated and its
data has been sent out of the pipeline, the Tag Check Logic
modules check that it conforms to the security policy defined
in the TCR. If not, an exception is raised.

In this paper, we rely on FISSA presented in Section III to
study the behaviour of the DIFT D-RI5CY mechanism against
different fault injection scenarios.

For this use case, we consider a software application in
which a buffer overflow can be exploited to perform a Return-

Oriented Programming attack (ROP)2. Thanks to the DIFT
mechanism, such an exploitation is detected and stopped.
However, a circuit designer may want to study the effect of
FIA on such a mechanism.

B. FISSA’s configuration

This subsection presents FISSA’s configuration to address
the considered use case.

We have configured four end-of-simulations statuses. End-
of-simulation statuses will be used to automatically generate
results tables. Examples will be provided in Subsection IV-C.
The initial status is labelled as a crash (status 1), signifying
that the fault injection has led to a deviation in program flow
control, causing the processor to execute instructions different
from what is expected. The second status, identified as a silent
fault (status 2), indicates that the fault has occurred but has
not affected the ongoing simulation behaviour. Status 3, termed
a delay, signifies that the fault has delayed the DIFT-related
exception (i.e. the exception is not raised at the same clock
cycle compared to the reference simulation). The final status
is denoted as a success (status 4), highlighting a bypass of
the DIFT mechanism and consequently marking a successful
attack. This status corresponds to the detection of the end of
the simulated program, while no exception has been raised.

In the input configuration file, a single injection window
is set between cycles 3428 and 3434, the maximum number
of simulated clock cycles is set to 100 from the start of the
injection window, this allows us to detect if there were a
control flow deviation, the design period is set to 40 ns, the
number of simulations per TCL script is set to 2,200. The
considered fault models are the seven fault models defined in
Section III : target set to 0, target set to 1, single bit-flip in
one target at a given cycle, single bit-flip in two targets at
a given cycle, single bit-flip in two targets at two different
cycles, exhaustive multi-bits faults in one target at a given
cycle, exhaustive multi-bits faults in two targets at a given
cycle.

Seven FIA simulation campaigns are performed for the
design and the seven fault models. We choose to log the
values of the Targets’ file, the simulation’s number, targets’
value after the injection, the injection cycle and the end-of-
simulation status. The Targets’ file is filled with 55 registers
representing a total of 127 bits.

C. Experimental results

This section presents results obtained using FISSA on the
considered use case. All experiments are performed on a server
with the following configuration: Xeon Gold 5220 (2,2 GHz,
18C/36T), 128 GB RAM, Ubuntu 20.04.6 LTS and Questasim
10.6e.

Table II summarises the outcomes of the seven previously
described fault injection campaigns, with each row represent-
ing a distinct fault model. Table II’s columns delineate the
potential end statuses for each simulation. This table is an

2https://github.com/sld-columbia/riscv-dift/tree/master/pulpino apps dift/
wilander testbed

https://github.com/sld-columbia/riscv-dift/tree/master/pulpino_apps_dift/wilander_testbed
https://github.com/sld-columbia/riscv-dift/tree/master/pulpino_apps_dift/wilander_testbed


al
u_

op
er

an
d_

a_
ex

_o
_t

ag
al

u_
op

er
an

d_
b_

ex
_o

_t
ag

al
u_

op
er

an
d_

c_
ex

_o
_t

ag
al

u_
op

er
at

or
_o

_m
od

e
ch

ec
k_

d_
o_

ta
g

ch
ec

k_
s1

_o
_t

ag
ch

ec
k_

s2
_o

_t
ag

is_
st

or
e_

po
st

_o
_t

ag
m

em
or

y_
se

t_
o_

ta
g

pc
_id

_o
_t

ag
pc

_if
_o

_t
ag

re
gf

ile
_a

lu
_w

ad
dr

_e
x_

o_
ta

g
re

gi
st

er
_s

et
_o

_t
ag

rf_
re

g[
0]

rf_
re

g[
10

]
rf_

re
g[

11
]

rf_
re

g[
12

]
rf_

re
g[

13
]

rf_
re

g[
14

]
rf_

re
g[

15
]

rf_
re

g[
16

]
rf_

re
g[

17
]

rf_
re

g[
18

]
rf_

re
g[

19
]

rf_
re

g[
1]

rf_
re

g[
20

]
rf_

re
g[

21
]

rf_
re

g[
22

]
rf_

re
g[

23
]

rf_
re

g[
24

]
rf_

re
g[

25
]

rf_
re

g[
26

]
rf_

re
g[

27
]

rf_
re

g[
28

]
rf_

re
g[

29
]

rf_
re

g[
2]

rf_
re

g[
30

]
rf_

re
g[

31
]

rf_
re

g[
3]

rf_
re

g[
4]

rf_
re

g[
5]

rf_
re

g[
6]

rf_
re

g[
7]

rf_
re

g[
8]

rf_
re

g[
9]

rs
1_

o_
ta

g
st

or
e_

de
st

_a
dd

r_
ex

_o
_t

ag
st

or
e_

so
ur

ce
_e

x_
o_

ta
g

tc
r_

q
tp

r_
q

us
e_

st
or

e_
op

s_
ex

_o

alu_operand_a_ex_o_tag
alu_operand_b_ex_o_tag
alu_operand_c_ex_o_tag

alu_operator_o_mode
check_d_o_tag

check_s1_o_tag
check_s2_o_tag

data_type_q_tag
data_we_q_tag

is_store_post_o_tag
memory_set_o_tag

pc_if_o_tag
rdata_offset_q_tag

rdata_q_tag
regfile_alu_waddr_ex_o_tag

register_set_o_tag
rf_reg[10]
rf_reg[11]
rf_reg[12]
rf_reg[13]
rf_reg[14]
rf_reg[15]
rf_reg[16]
rf_reg[17]
rf_reg[18]
rf_reg[19]

rf_reg[1]
rf_reg[20]
rf_reg[21]
rf_reg[22]
rf_reg[23]
rf_reg[24]
rf_reg[25]
rf_reg[26]
rf_reg[27]
rf_reg[28]
rf_reg[29]

rf_reg[2]
rf_reg[30]
rf_reg[31]

rf_reg[3]
rf_reg[4]
rf_reg[5]
rf_reg[6]
rf_reg[7]
rf_reg[8]
rf_reg[9]

rs1_o_tag
store_dest_addr_ex_o_tag

store_source_ex_o_tag
tcr_q
tpr_q

use_store_ops_ex_o

1
1
1
2
1
1
1

2 2 2 10 8
1 1 1 5 4

1
1 1 2 1 1 1 1 1

2
2 2 2 10 8
4 4 4 20 16
5 4
1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1 2 1 1 1 1 2 2 5 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1
1 1
1 1

2 4 5 10 4 4 5 5 34 5 32 24 4 5 5 5 5 5 5 5 5 5 5 34 5 5 5 5 5 5 5 5 5 5 1 5 5 5 5 5 5 5 5 5 3 5 5 135 5
4 4 8 4 4 4 4 32 29 20 4 4 4 4 4 4 4 4 4 4 4 4 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 4 4 272124 4

1 1

0

50

100

150

200

250

Nu
m

be
r o

f s
uc

ce
ss

Fig. 4. Heatmap generated according to the single bit-flip in two targets at a given clock cycle fault model

essential tool for the designers, enabling them to analyse the
vulnerabilities associated with each fault model within their
design. Consequently, the designers can determine the neces-
sity for additional protective measures or design alterations.

For instance, Table II illustrates that the ’set to 1’
fault model results in only three successful outcomes,
whereas the ’single bit-flip in two targets at
two different clock cycles’ fault model leads to
2,159 successes. These findings guide the designers in evaluat-
ing the significance of protecting against specific fault models.

To further assess vulnerabilities, the designers can utilise
Table III, which provides detailed information on the register
and cycle locations of faults for models with fewer successful
outcomes. For fault models with a high number of successes,
where the table may become unwieldy, Figure 4 serves as

a more accessible reference. This figure helps in visualising
and interpreting the spatial distribution of vulnerabilities ef-
fectively.

Table III is produced by FISSA and details the suc-
cesses from three distinct fault injection campaigns: set to
0, set to 1 and single bit-flip in one target
at a given cycle. Table III specifies successes for each
fault model, correlated with the cycle and the affected target.
For example, a set to 0 fault at cycle 3428 on tcr_q
would lead to a successfully attack. It highlights which targets
are sensitive to fault attacks at a cycle-accurate and bit-
accurate level, providing the designers precise information on
critical elements requiring protection based on their specific
needs. Table III only covers the most basic fault models.
Indeed, producing a table for more complex scenarios, such as



TABLE II
RESULTS OF FAULT INJECTION SIMULATION CAMPAIGNS

Fault model Crash Silent Delay Success Total

Set to 0 0 320 1 9 (2.73%) 330
Set to 1 0 320 7 3 (0.91%) 330

Single bit-flip in one target at a given clock cycle 0 738 12 12 (1.57%) 762
Single bit-flip in two targets at a given clock cycle 0 45,097 1,503 1,406 (2.93%) 48,006

Single bit-flip in two targets at two different clock cycles 0 238,633 1,143 2,159 (0.89%) 241,935
Exhaustive multi-bits faults in one target at a given clock cycle 0 927 6 3 (0.32%) 936

Exhaustive multi-bits faults in two targets at a given clock cycle 0 67,072 926 450 (0.66%) 68,448

TABLE III
BUFFER OVERFLOW: SUCCESS PER REGISTER, FAULT TYPE AND SIMULATION TIME

Cycle 3428 Cycle 3429 Cycle 3430 Cycle 3431 Cycle 3432

set 0 set 1 bit-flip set 0 set 1 bit-flip set 0 set 1 bit-flip set 0 set 1 bit-flip set 0 set 1 bit-flip

pc if o tag ✓ ✓
memory set o tag ✓ ✓

rf reg[1] ✓ ✓
tcr q ✓ ✓ ✓ ✓ ✓

tcr q[21] ✓ ✓ ✓ ✓ ✓
tpr q ✓ ✓ ✓ ✓

tpr q[12] ✓ ✓
tpr q[15] ✓ ✓

simultaneous faults in two targets within a same or multiple
cycles, would be intricate and challenging to interpret. Con-
sequently, we opted for an alternative method and developed
a heatmap representation (e.g. Figure 4).

To further explore the impact of FIA on a design, a designer
can study heatmaps generated by FISSA. These heatmaps are
tailored to a fault model with two faulty registers, where each
matrix intersection shows the number of successes with that
target pair.

Figure 4 shows the heatmap generated for the single bit-
flip in two targets at a given clock cycle fault model. The
colour scale represents the number of fault injections targeting
a couple of hardware elements (i.e. registers for this use case)
leading to a success as defined in Subsection IV-B. We can
note that this colour scale, in our case, range from 1 to 272
with 0 excluded. This figure highlights the registers that are
critical to a specific fault model, allowing the designer to
assess his design and choose which protection and where a
protection is required, from low need to very high need. To
give an example, it can be noted that the horizontally displayed
registers tcr_q and tpr_q are critical registers, because a
success will occur regardless of the associated register. Sim-
ilarly, the registers shown vertically, memory_set_o_tag,
pc_if_o_tag, and rf_reg[1], are also critical because
they lead to many successes with almost all tested registers.

To provide an analytical perspective from the buffer over-
flow use case presented in Section IV, the five previously
mentioned registers are critical as they either store the DIFT
security policy configuration (tpr_q and tcr_q) or store
(rf_reg[1] represents the tag associated with the value of
the Program Counter (PC), which is stored in the register

file at index 1 for RISC-V ISA) and propagate the tag
(pc_if_o_tag) associated with the PC. This is particularly
important in our example, which demonstrates an ROP attack
via a buffer overflow. The colour scale indicates the impact
of the fault injections on the combination of registers tested.
For example, a pair associated with a high number such as
272, 124, and 135 for tcr_q and tpr_q are very high
priority as they lead to 37.77% success on this fault model.
In addition, we can see that several registers produce a low
number of successes, such as alu_operand_a_ex_o_tag
and rf_reg[2]; these registers are then not the highest
priority for protection for the designer.

It allows the designer to identify the critical hardware
elements to be protected for the use case under considera-
tion. All of this information allows the designer to prioritize
countermeasures according to allocated budget, protection
requirements, etc.

While Table II provides the total number of successes
for each fault model and Table III gives the successes for
each fault model (set to 0, set to 1, and a single
bit flip in a target at a given cycle) corre-
lated with the cycle and affected target, Figure 4 shows
that fault injections in 246 register pairs result in a success.
This information allows the designer to focus on specific
simulation traces to understand the effect(s) of the fault(s) and
improve the robustness of his design by implementing adapted
countermeasures.

To conclude this section, we aim to provide an overview
of the time invested in these simulations. The entire fault
injection campaign comprises 360,747 simulations, involving
the injection of 1 or 2 faults per simulation. The duration of



these simulations was about 67 hours, equating to an average
of 0.725 seconds per simulation, spanning from initialisation to
data recording. The execution time is contingent upon various
parameters, including the design’s size, the specific simulation
case, and the number of targets involved. In emulation cam-
paigns, FPGA-based fault emulation is four times faster than
simulation-based techniques, as noted in paper [19]. Actual
FIAs are faster than simulations, taking about 0.35 seconds
per injection in our tests, relying on the ChipWhisperer-lite
platform for clock glitching injection. While simulations may
be slower, they offer the benefit of not requiring an FPGA
prototype or the final circuit. Furthermore, it allows integrating
vulnerability assessment in the first stages of the development
flow and provides a rich set of information for the designer in
order to understand sources of vulnerabilities in his design.

V. CONCLUSION

This paper introduces a flexible open-source tool, FISSA,
to automate fault injection campaigns and illustrates its usage
through a case study. FISSA seamlessly integrates with well
known HDL simulators such as Questasim. It generates TCL
scripts for simulation execution and produces JSON log files
for subsequent security analysis. We have demonstrated that
this tool can be incorporated to evaluate a design at the
conceptual stage. The designer is able to select the parameters
of the assessment, such as the fault model and targets, to
meet their specific requirements. Results generated by the
tool will assist the designer in creating a more secure design,
embodying the principles of Security by Design.

As a perspective, we plan to extend FISSA to support
new fault models and HDL simulators such as Vivado or
Verilator. Furthermore, we intend to enhance integration into
the design workflow by adding functionalities. This may
include the management of HDL sources compilation, design’s
input stimuli or the development of a graphical user interface
to improve the overall user experience.

REFERENCES
[1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The Sorcerer’s

Apprentice Guide to Fault Attacks,” Proceedings of the IEEE, 2006. DOI: 10.
1109/JPROC.2005.862424.

[2] D. Karaklajić, J.-M. Schmidt, and I. Verbauwhede, “Hardware Designer’s Guide
to Fault Attacks,” IEEE Transactions on Very Large Scale Integration Systems,
2013. DOI: 10.1109/TVLSI.2012.2231707.

[3] J. Laurent, V. Beroulle, C. Deleuze, and F. Pebay-Peyroula, “Fault Injection on
Hidden Registers in a RISC-V Rocket Processor and Software Countermeasures,”
in Design, Automation & Test in Europe Conference (DATE), 2019. DOI: 10 .
23919/DATE.2019.8715158.

[4] T. Trouchkine, S. K. K. Bukasa, M. Escouteloup, R. Lashermes, and G. Bouffard,
“Electromagnetic Fault Injection Against a Complex CPU, toward new Micro-
architectural Fault Models,” Journal of Cryptographic Engineering, 2021. DOI:
10.1007/s13389-021-00259-6.

[5] V. Khuat, J.-M. Dutertre, and J.-L. Danger, “Analysis of a Laser-induced
Instructions Replay Fault Model in a 32-bit Microcontroller,” in Digital System
Design (DSD), 2021. DOI: 10.1109/DSD53832.2021.00061.

[6] S. Nashimoto, D. Suzuki, R. Ueno, and N. Homma, “Bypassing Isolated Execu-
tion on RISC-V using Side-Channel-Assisted Fault-Injection and Its Countermea-
sure,” IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), 2021. DOI: 10.46586/tches.v2022.i1.28-68.

[7] C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. P. Carloni, “Design and
Implementation of a Dynamic Information Flow Tracking Architecture to Secure
a RISC-V Core for IoT Applications,” in High Performance Extreme Computing,
2018. DOI: 10.1109/HPEC.2018.8547578.

[8] F. Corno, G. Cumani, M. S. Reorda, and G. Squillero, “Rt-level fault simulation
techniques based on simulation command scripts,” in DCIS 2000: XV Conference
on Design of Circuits and Integrated Systems, 2000, pp. 21–24.

[9] J. Richter-Brockmann, A. Rezaei Shahmirzadi, P. Sasdrich, A. Moradi, and
T. Güneysu, “FIVER – Robust Verification of Countermeasures against Fault
Injections,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021. DOI: 10.46586/tches.v2021.i4.447-473.

[10] V. Arribas, S. Nikova, and V. Rijmen, “VerMI: Verification Tool for Masked
Implementations,” in 25th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), 2018. DOI: 10.1109/ICECS.2018.8617841.

[11] G. Barthe, S. Belaı̈d, G. Cassiers, P.-A. Fouque, B. Grégoire, and F.-X. Standaert,
“maskVerif: Automated Verification of Higher-Order Masking in Presence of
Physical Defaults,” in Computer Security – ESORICS 2019: 24th European
Symposium on Research in Computer Security, Proceedings, Part I, 2019. DOI:
10.1007/978-3-030-29959-0 15.

[12] S. Tollec, V. Hadžić, P. Nasahl, et al., “Fault-resistant partitioning of secure cpus
for system co-verification against faults,” 2024. [Online]. Available: https://eprint.
iacr.org/2024/247.

[13] A. Adhikary and I. Buhan, “SoK: Assisted Fault Simulation,” in Applied Cryp-
tography and Network Security Workshops, Springer Nature Switzerland, 2023.
DOI: 10.1007/978-3-031-41181-6 10.

[14] Riscure, FiSim: An open-source deterministic Fault Attack Simulator Prototype.
[Online]. Available: https://github.com/Riscure/FiSim.

[15] V. Arribas, F. Wegener, A. Moradi, and S. Nikova, “Cryptographic Fault Diagnosis
using VerFI,” in IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), 2020. DOI: 10.1109/HOST45689.2020.9300264.

[16] G. Canivet, P. Maistri, R. Leveugle, J. Clédière, F. Valette, and M. Renaudin,
“Glitch and laser fault attacks onto a secure AES implementation on a SRAM-
based FPGA,” Journal of cryptology, 2011. DOI: 10.1007/s00145-010-9083-9.

[17] F. Hauschild, K. Garb, L. Auer, B. Selmke, and J. Obermaier, “ARCHIE: A
QEMU-Based Framework for Architecture-Independent Evaluation of Faults,” in
Workshop on Fault Detection and Tolerance in Cryptography (FDTC), 2021. DOI:
10.1109/FDTC53659.2021.00013.

[18] Y. B. Bekele, D. B. Limbrick, and J. C. Kelly, “A Survey of QEMU-Based Fault
Injection Tools & Techniques for Emulating Physical Faults,” IEEE Access, 2023.
DOI: 10.1109/ACCESS.2023.3287503.

[19] R. Nyberg, J. Nolles, J. Heyszl, D. Rabe, and G. Sigl, “Closing the Gap between
Speed and Configurability of Multi-bit Fault Emulation Environments for Security
and Safety-Critical Designs,” in 17th Euromicro Conference on Digital System
Design, 2014. DOI: 10.1109/DSD.2014.39.

[20] C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the Glitch: Optimizing Voltage
Fault Injection Attacks,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019. DOI: 10.13154/tches.v2019.i2.199-224.

[21] P. Grandamme, L. Bossuet, and J.-M. Dutertre, “X-Ray Fault Injection in Non-
Volatile Memories on Power OFF Devices,” in 2023 IEEE Physical Assurance
and Inspection of Electronics (PAINE), 2023. DOI: 10.1109/PAINE58317.2023.
10318018.

[22] B. Colombier, P. Grandamme, J. Vernay, et al., “Multi-Spot Laser Fault Injection
Setup: New Possibilities for Fault Injection Attacks,” in Smart Card Research
and Advanced Applications, V. Grosso and T. Pöppelmann, Eds., 2022. DOI:
10.1007/978-3-030-97348-3 9.

[23] T. Schneider, A. Moradi, and T. Güneysu, “ParTI–towards combined hardware
countermeasures against side-channel and fault-injection attacks,” in Advances
in Cryptology–CRYPTO: 36th Annual International Cryptology Conference, Pro-
ceedings, Part II 36, 2016. DOI: 10.1007/978-3-662-53008-5 11.

[24] Siemens, QuestaSim. [Online]. Available: https : / / eda . sw . siemens . com / en -
US/ic/questa/simulation/advanced-simulator/.

[25] Verilator, Verilator. [Online]. Available: https://github.com/verilator/verilator.
[26] Xilinx, Vivado Design Suite. [Online]. Available: https : / / www . xilinx . com /

products/design-tools/vivado.html.
[27] M. L. Waskom, “Seaborn: statistical data visualization,” Journal of Open Source

Software, 2021. DOI: 10.21105/joss.03021.
[28] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science

& Engineering, 2007. DOI: 10.5281/zenodo.7697899.
[29] Microsemi, Modelsim reference manual 10.4c. [Online]. Available: https://www.

microsemi . com / document - portal / doc view / 136364 - modelsim - me - 10 - 4c -
command-reference-manual-for-libero-soc-v11-7.

[30] Xilinx, Vivado reference manual 2023.2. [Online]. Available: https://docs.xilinx.
com/r/en-US/ug835-vivado-tcl-commands/add force.

https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/TVLSI.2012.2231707
https://doi.org/10.23919/DATE.2019.8715158
https://doi.org/10.23919/DATE.2019.8715158
https://doi.org/10.1007/s13389-021-00259-6
https://doi.org/10.1109/DSD53832.2021.00061
https://doi.org/10.46586/tches.v2022.i1.28-68
https://doi.org/10.1109/HPEC.2018.8547578
https://doi.org/10.46586/tches.v2021.i4.447-473
https://doi.org/10.1109/ICECS.2018.8617841
https://doi.org/10.1007/978-3-030-29959-0_15
https://eprint.iacr.org/2024/247
https://eprint.iacr.org/2024/247
https://doi.org/10.1007/978-3-031-41181-6_10
https://github.com/Riscure/FiSim
https://doi.org/10.1109/HOST45689.2020.9300264
https://doi.org/10.1007/s00145-010-9083-9
https://doi.org/10.1109/FDTC53659.2021.00013
https://doi.org/10.1109/ACCESS.2023.3287503
https://doi.org/10.1109/DSD.2014.39
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.1109/PAINE58317.2023.10318018
https://doi.org/10.1109/PAINE58317.2023.10318018
https://doi.org/10.1007/978-3-030-97348-3_9
https://doi.org/10.1007/978-3-662-53008-5_11
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://eda.sw.siemens.com/en-US/ic/questa/simulation/advanced-simulator/
https://github.com/verilator/verilator
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://doi.org/10.21105/joss.03021
https://doi.org/10.5281/zenodo.7697899
https://www.microsemi.com/document-portal/doc_view/136364-modelsim-me-10-4c-command-reference-manual-for-libero-soc-v11-7
https://www.microsemi.com/document-portal/doc_view/136364-modelsim-me-10-4c-command-reference-manual-for-libero-soc-v11-7
https://www.microsemi.com/document-portal/doc_view/136364-modelsim-me-10-4c-command-reference-manual-for-libero-soc-v11-7
https://docs.xilinx.com/r/en-US/ug835-vivado-tcl-commands/add_force
https://docs.xilinx.com/r/en-US/ug835-vivado-tcl-commands/add_force

	Introduction
	Related Work
	FISSA
	Supported Fault models
	TCL Generator
	Fault Injection Simulator
	Analyser
	Extending FISSA

	Use Case
	D-RI5CY DIFT mechanism
	FISSA's configuration
	Experimental results

	Conclusion

