
Implementation and evaluation of countermeasures
implementation in a DIFT against Fault Injection Attacks

William PENSEC1, Vianney LAPÔTRE1 and Guy GOGNIAT1

1Université Bretagne Sud, UMR 6285, Lab-STICC, Lorient, France
firstname.lastname@univ-ubs.fr

1 Introduction

Software attacks such as buffer overflows, and mal-
ware can be detected using Dynamic Information Flow
Tracking (DIFT) techniques. These techniques tag and
track information containers during runtime to detect
malicious activities. Various DIFT implementations,
including hardware, software, and hybrid approaches,
have been studied [1]. Information containers can
range from files to registers.

This study focuses on the D-RI5CY processor as
proposed in [2]. Our objective is to assess the impact
of Fault Injection Attacks (FIAs) on the D-RI5CY
DIFT mechanism and to propose effective countermea-
sures. We use fault injection simulations to evaluate
the sensitivity of DIFT and identify vulnerable reg-
isters by using a new open-source tool designed to
perform automated fault injection campaigns.

FIAs can be induced via power supply glitches, clock
perturbations, or laser shots. Laser injections offer pre-
cise control, while power and clock perturbations affect
the entire circuit. Critical systems are vulnerable to
such attacks, which can bypass protection mechanisms
and hijack systems, as shown in [3].

Figure 1 presents an overview of the D-RI5CY pro-
cessor with DIFT components highlighted. These com-
ponents manage tags during execution. The security
policy is configured via Control and Status Registers
(CSRs), TPR, and TCR.

We present three different countermeasures to en-
hance the DIFT mechanism against FIAs. We briefly
explain the implementation of these countermeasures
and provide a brief presentation of the results. Our
analysis aims to develop a more robust DIFT mech-
anism that can counter both software and physical
attacks. .

CONTROLLER

IF
/
ID

ID
/
E
X

E
X
/
W

B

PC T

Tag Check

Logic

Instruction

Memory

Instruction

Cache

Decoder

Exception

Controller

Register

File
T

Tag Update

Logic

ALU

CSR
TPR

TCR

MULT

DIV FPU

Tag

Propagation

Logic

LSU

Tag Check

Logic

Data

Memory
T

D-RI5CY
in-core

off-core

off-core

Figure 1: Overview of the D-RI5CY processor

2 Countermeasures
implementations

We have shown that DIFT is vulnerable against FIA
and the main threat that it faces is bit-flips. For an
attacker able to attack specific bits, he would be able
to bypass the DIFT computation.

To protect our DIFT, we propose different coun-
termeasures from being able to detect only single-bit
fault to be able to detect two-bits faults and correct
single-bit errors. At first, we choose to implement
simple parity which will be able to detect single-bit
fault. With this countermeasure, we have shown that
we can detect every single-fault and we can stop the
faulted application at cycle accurate. But with it, we
only detect errors. For that, we choose to implement
Hamming Code into our registers. For that, we tried
different implementation from one that reduce the
number of redundandy bits by grouping small regis-
ters together, to protecting our registers by pipeline
stage or even protecting every register with Hamming
code. This induce a bigger overhead but with better
results than the first implementation against two-bits
errors. The last implementation is the more complex
and split every registers. This lead to an overhead
of 3.98% in terms of LUTs. To face two-bits errors,
we choose to use another version of Hamming code
with an extra bit for parity (SECDED for single-error
correction, double-errors detection), under the same
implementation than Hamming code.

Finally, we compare the results associated to each
implementation in terms of area, performance and ef-
ficiency against different fault models from simple one
(single-bit fault into one register at a given cycle) to
more complex ones (multi-bits faults into two registers
at a given cycle).

References

[1] Kejun Chen et al. “Dynamic Information Flow Tracking:
Taxonomy, Challenges, and Opportunities”. In: Microma-
chines (2021). doi: 10.3390/mi12080898.

[2] Christian Palmiero et al. “Design and Implementation of
a Dynamic Information Flow Tracking Architecture to
Secure a RISC-V Core for IoT Applications”. In: High
Performance Extreme Computing. 2018. doi: 10.1109/
HPEC.2018.8547578.

[3] Niek Timmers et al. “Controlling PC on ARM Using Fault
Injection”. In: Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC). 2016. doi: 10.1109/FDTC.2016.18.

JAIF 2024 - Rennes - 1er Octobre 2024 1

https://doi.org/10.3390/mi12080898
https://doi.org/10.1109/HPEC.2018.8547578
https://doi.org/10.1109/HPEC.2018.8547578
https://doi.org/10.1109/FDTC.2016.18

	Introduction
	Countermeasures implementations

