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Abstract—This work introduces FISSA, an open-source soft-
ware tool designed to simplify the creation of fault injection cam-
paigns using popular HDL simulation tools. FISSA comprises two
key modules, each encapsulating an existing HDL simulator. The
first module generates TCL scripts to automate fault injection
according to user specifications, while the second module facili-
tates fault analysis, allowing users to evaluate design’s security.
This approach seamlessly integrates fault injection simulations
into the design workflow. To showcase FISSA’s effectiveness,
the paper presents a case study assessing the robustness of a
Dynamic Information Flow Tracking mechanism within a RISC-
V processor across fault injection scenarios.

Index Terms—Hardware security, RISC-V, DIFT, Fault Injec-
tions Attacks, Open-Source tool, Vulnerability Assessment

I. INTRODUCTION

Internet of Things (IoT) devices have transformed the
way we interact with our environment. These interconnected
devices seamlessly collect, exchange, and analyse data, en-
hancing efficiency and convenience across various domains
(medical sensors, automotive, intelligent security systems).
However, this increased connectivity also raises concerns
about potential physical attacks, such as fault injection attacks
(FIA) [1] gaining attention in recent years.

Many studies have shown the vulnerabilities of critical sys-
tems against FIAs. In [2], authors demonstrate the possibility
to recover computed secret data using FIA targeting hidden
registers on the RISC-V Rocket processor. In [3], Electromag-
netic Fault Injection (EMFI) attack is used to recover an AES
key by targeting the cache hierarchy and the MMU. Finally,
authors of [4] have shown that one can combine side-channel
attacks (SCA) and FIAs to bypass the PMP mechanism in a
RISC-V processor. It is therefore necessary, when designing a
circuit, to assess its sensitivity to FIA as soon as possible.

The rest of the paper is structured as follows. Section II
introduces FISSA, our fault injection tool. Section III describes
our experimental setup for fault injection simulations and
presents the results of the different fault injections campaigns
with and without protections. Finally, Section IV concludes
the work and draws some perspectives.

II. FISSA - FAULT INJECTION SIMULATION FOR
SECURITY ASSESSMENT

This section presents our open-source tool, FISSA, to help
circuit designers to analyse, throughout the design cycle, the
sensitivity to FIA of the developed circuit. Figure 1 presents
the software architecture of FISSA. It consists of 3 different
modules: TCL Generator, Fault Injection Simulator and Anal-
yser. The first and third modules correspond to a set of Python
classes.

The TCL Generator takes a configuration file and a target
file to generate a set of parameterised TCL scripts. These
scripts are customised according to the provided configuration
file and are used to execute the fault injection campaign.

The Fault Injection Simulator conducts the fault injection
campaign using input files generated by the TCL Generator.
The simulator simulates these input files on a circuit design via
HDL files and memory initialisation files to generate output
JSON result files. To accomplish this, it relies on an existing
HDL simulator such as Questasim, or Vivado.

The Analyser assesses the results of the simulations and
generates a collection of files that enables designers to examine
the effects of fault injection on their designs using various
pieces of information.
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Fig. 1. Software architecture of FISSA

The tool requires a set of targets (i.e. hardware elements
in which a fault should be injected), the fault model and the
considered injection window(s) which identifies the period(s),
in number of clock cycles, in which fault injections are
performed. Then, it runs a first simulation with no fault
injected, which is used as a reference for comparison with the
following simulations to determine end-of-simulation statuses.



TABLE I
LOGICAL FAULT INJECTION SIMULATION CAMPAIGNS RESULTS FOR SINGLE BIT-FLIP IN TWO REGISTERS AT A GIVEN CLOCK CYCLES

Crash Silent Delay Single Error Correction Double Errors Detection Success Total

Buffer overflow
No protection 0 45,097 1,503 – – 1,406 (2.93%) 48,006

Hamming Code 0 0 575 67,829 – 452 (0.66%) 68,856
SECDED 0 2,436 0 59,424 11,616 0 (0.00%) 73,476
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Fig. 2. D-RI5CY processor architecture overview

Then, for each target, each fault model and for each clock cycle
within the injection window, the simulation is executed, and
the logs are stored in a dedicated file.

III. EXPERIMENTAL SETUP AND RESULTS

This section presents a case study to demonstrate the interest
of the proposed solution. It focuses on the evaluation of the
robustness of the Dynamic Information Flow Tracking (DIFT)
mechanism integrated to the D-RI5CY [5] processor.

The D-RI5CY core is a 4-stage in-order 32-bit RISC-V
processor. It introduces an DIFT mechanism to protect the
processor against software attacks such as buffer overflows
or SQL injections. Figure 2 presents an overview of the D-
RI5CY processor. DIFT-related modules are highlighted in red.
These modules allow storing, propagating and checking tags
during the execution of an application. The security policy
is configured through two CSRs (Configuration and Status
Register) named TPR (Tag Propagation Register) and TCR
(Tag Check Register). The Tag Update Logic module is used
to initialise or update the tag in the register file according
to the tagged data. Then, when a tag is propagated in the
pipeline, the Tag Propagation Logic module propagates tags
according to the security policy defined in the TPR. Once a
tag has been propagated and its data has been sent out of the
pipeline, the Tag Check Logic modules check that it conforms
to the security policy defined in the TCR. If not, an exception
is raised.

We rely on FISSA, described in Section II, to study the
behaviour of the DIFT D-RI5CY mechanism against different
fault injection scenarios taking into account three versions of
the D-RI5CY: an unprotected, a Hamming Code implemented
version and a Hamming Code with a parity bit (SECDED)
version for double errors detections. For the use case, we
consider a software application in which a buffer overflow
can be exploited to perform a Return-Oriented Programming

attack (ROP). Thanks to the DIFT mechanism, such attack is
detected and stopped.

Table I shows the results obtained from this use case on
the three implemented protections. We consider, for our fault
model, an attacker able to perform one single bit-flip in two
registers at a given clock cycle. We will only consider bit-flips
into DIFT-related registers, as we want to show the limit of
the DIFT against FIA. The results presented in Table I reveal
that employing the unprotected version will lead to 2.93%
of successes when attacking the registers, while this number
goes down to 0.66% with Hamming Code. With less than 1%
of successes, we could stop the evaluation there, but in real
world, an attacker would need only 1 success to perform and
obtain access to the device. To harden our DIFT mechanism,
we choose to implement SECDED, with this protection we
can correct single error and detect double errors. For that we
use, the same implementation as Hamming Code but with a
simple extra bit. Then, all single faults are corrected depending
on our implementation and all double bit errors are detected.
The last 2,436 silent faults happen when there is double fault
in parity bit of SECDED or in the TPR and TCR unprotected
part as all the TPR and TCR are not used.

IV. CONCLUSION

In this work, we present a configurable open-source tool,
FISSA, to automate fault injection campaigns simulation. We
illustrate, quickly, FISSA thanks to a case study. FISSA can be
used with well-known HDL simulators such as Questasim. It
generates TCL scripts for simulation execution and produces
JSON log files for security analysis.

For future work, we plan to support new HDL simulators
(Vivado, Verilator), extend the fault models supported and
improve integration into the design workflow.
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